jackstraw_MiniBatchKmeans {jackstraw} | R Documentation |
Non-Parametric Jackstraw for Mini Batch K-means Clustering
Description
Test the cluster membership for K-means clustering
Usage
jackstraw_MiniBatchKmeans(
dat,
MiniBatchKmeans.output = NULL,
s = NULL,
B = NULL,
center = TRUE,
covariate = NULL,
verbose = FALSE,
batch_size = floor(nrow(dat)/100),
initializer = "kmeans++",
pool = TRUE,
...
)
Arguments
dat |
a data matrix with |
MiniBatchKmeans.output |
an output from applying |
s |
a number of “synthetic” null variables. Out of |
B |
a number of resampling iterations. |
center |
a logical specifying to center the rows. By default, |
covariate |
a model matrix of covariates with |
verbose |
a logical specifying to print the computational progress. By default, |
batch_size |
the size of the mini batches. |
initializer |
the method of initialization. By default, |
pool |
a logical specifying to pool the null statistics across all clusters. By default, |
... |
optional arguments to control the Mini Batch K-means clustering algorithm (refers to |
Details
K-means clustering assign m
rows into K
clusters. This function enable statistical
evaluation if the cluster membership is correctly assigned. Each of m
p-values refers to
the statistical test of that row with regard to its assigned cluster.
Its resampling strategy accounts for the over-fitting characteristics due to direct computation of clusters from the observed data
and protects against an anti-conservative bias.
Value
jackstraw_MiniBatchKmeans
returns a list consisting of
F.obs |
|
F.null |
F null statistics between null variables and cluster centers, from the jackstraw method. |
p.F |
|
Author(s)
Neo Christopher Chung nchchung@gmail.com
References
Chung (2020) Statistical significance of cluster membership for unsupervised evaluation of cell identities. Bioinformatics, 36(10): 3107–3114 https://academic.oup.com/bioinformatics/article/36/10/3107/5788523
Examples
## Not run:
library(ClusterR)
dat = t(scale(t(Jurkat293T), center=TRUE, scale=FALSE))
MiniBatchKmeans.output <- MiniBatchKmeans(data=dat, clusters = 2, batch_size = 300,
initializer = "kmeans++")
jackstraw.output <- jackstraw_MiniBatchKmeans(dat,
MiniBatchKmeans.output = MiniBatchKmeans.output)
## End(Not run)