relation-locate {ivs}R Documentation

Locate relationships between two ivs

Description

This family of functions locates different types of relationships between two ivs. It works similar to base::match(), where needles[i] checks for a relationship in all of haystack. Unlike match(), all matching relationships are returned, rather than just the first.

These functions return a two column data frame. The needles column is an integer vector pointing to locations in needles. The haystack column is an integer vector pointing to locations in haystack with a matching relationship.

Usage

iv_locate_overlaps(
  needles,
  haystack,
  ...,
  type = "any",
  missing = "equals",
  no_match = NA_integer_,
  remaining = "drop",
  multiple = "all",
  relationship = "none"
)

iv_locate_precedes(
  needles,
  haystack,
  ...,
  closest = FALSE,
  missing = "equals",
  no_match = NA_integer_,
  remaining = "drop",
  multiple = "all",
  relationship = "none"
)

iv_locate_follows(
  needles,
  haystack,
  ...,
  closest = FALSE,
  missing = "equals",
  no_match = NA_integer_,
  remaining = "drop",
  multiple = "all",
  relationship = "none"
)

Arguments

needles, haystack

⁠[iv]⁠

Interval vectors used for relation matching.

  • Each element of needles represents the interval to search for.

  • haystack represents the intervals to search in.

Prior to comparison, needles and haystack are coerced to the same type.

...

These dots are for future extensions and must be empty.

type

⁠[character(1)]⁠

The type of relationship to find. One of:

  • "any": Finds any overlap whatsoever between an interval in needles and an interval in haystack.

  • "within": Finds when an interval in needles is completely within (or equal to) an interval in haystack.

  • "contains": Finds when an interval in needles completely contains (or equals) an interval in haystack.

  • "equals": Finds when an interval in needles is exactly equal to an interval in haystack.

  • "starts": Finds when the start of an interval in needles matches the start of an interval in haystack.

  • "ends": Finds when the end of an interval in needles matches the end of an interval in haystack.

missing

⁠[integer(1) / "equals" / "drop" / "error"]⁠

Handling of missing intervals in needles.

  • "equals" considers missing intervals in needles as exactly equal to missing intervals in haystack when determining if there is a matching relationship between them.

  • "drop" drops missing intervals in needles from the result.

  • "error" throws an error if any intervals in needles are missing.

  • If a single integer is provided, this represents the value returned in the haystack column for intervals in needles that are missing.

no_match

Handling of needles without a match.

  • "drop" drops needles with zero matches from the result.

  • "error" throws an error if any needles have zero matches.

  • If a single integer is provided, this represents the value returned in the haystack column for values of needles that have zero matches. The default represents an unmatched needle with NA.

remaining

Handling of haystack values that needles never matched.

  • "drop" drops remaining haystack values from the result. Typically, this is the desired behavior if you only care when needles has a match.

  • "error" throws an error if there are any remaining haystack values.

  • If a single integer is provided (often NA), this represents the value returned in the needles column for the remaining haystack values that needles never matched. Remaining haystack values are always returned at the end of the result.

multiple

Handling of needles with multiple matches. For each needle:

  • "all" returns all matches detected in haystack.

  • "any" returns any match detected in haystack with no guarantees on which match will be returned. It is often faster than "first" and "last" if you just need to detect if there is at least one match.

  • "first" returns the first match detected in haystack.

  • "last" returns the last match detected in haystack.

relationship

Handling of the expected relationship between needles and haystack. If the expectations chosen from the list below are invalidated, an error is thrown.

  • "none" doesn't perform any relationship checks.

  • "one-to-one" expects:

    • Each value in needles matches at most 1 value in haystack.

    • Each value in haystack matches at most 1 value in needles.

  • "one-to-many" expects:

    • Each value in needles matches any number of values in haystack.

    • Each value in haystack matches at most 1 value in needles.

  • "many-to-one" expects:

    • Each value in needles matches at most 1 value in haystack.

    • Each value in haystack matches any number of values in needles.

  • "many-to-many" expects:

    • Each value in needles matches any number of values in haystack.

    • Each value in haystack matches any number of values in needles.

    This performs no checks, and is identical to "none", but is provided to allow you to be explicit about this relationship if you know it exists.

  • "warn-many-to-many" doesn't assume there is any known relationship, but will warn if needles and haystack have a many-to-many relationship (which is typically unexpected), encouraging you to either take a closer look at your inputs or make this relationship explicit by specifying "many-to-many".

relationship is applied after filter and multiple to allow potential multiple matches to be filtered out first.

relationship doesn't handle cases where there are zero matches. For that, see no_match and remaining.

closest

⁠[TRUE / FALSE]⁠

Should only the closest relationship be returned?

If TRUE, will only return the closest interval(s) in haystack that the current value of needles either precedes or follows. Note that multiple intervals can still be returned if there are ties, which can be resolved using multiple.

Value

A data frame containing two integer columns named needles and haystack.

See Also

Detecting relationships

Detecting relationships pairwise

Locating relations from Allen's Interval Algebra

Examples

x <- iv_pairs(
  as.Date(c("2019-01-05", "2019-01-10")),
  as.Date(c("2019-01-07", "2019-01-15")),
  as.Date(c("2019-01-20", "2019-01-31"))
)

y <- iv_pairs(
  as.Date(c("2019-01-01", "2019-01-03")),
  as.Date(c("2019-01-04", "2019-01-08")),
  as.Date(c("2019-01-07", "2019-01-09")),
  as.Date(c("2019-01-10", "2019-01-20")),
  as.Date(c("2019-01-15", "2019-01-20"))
)

x
y

# Find any overlap between `x` and `y`
loc <- iv_locate_overlaps(x, y)
loc

iv_align(x, y, locations = loc)

# Find where `x` contains `y` and drop results when there isn't a match
loc <- iv_locate_overlaps(x, y, type = "contains", no_match = "drop")
loc

iv_align(x, y, locations = loc)

# Find where `x` precedes `y`
loc <- iv_locate_precedes(x, y)
loc

iv_align(x, y, locations = loc)

# Filter down to find only the closest interval in `y` of all the intervals
# where `x` preceded it
loc <- iv_locate_precedes(x, y, closest = TRUE)

iv_align(x, y, locations = loc)

# Note that `closest` can result in duplicates if there is a tie.
# `2019-01-20` appears as an end date twice in `haystack`.
loc <- iv_locate_follows(x, y, closest = TRUE)
loc

iv_align(x, y, locations = loc)

# Force just one of the ties to be returned by using `multiple`.
# Here we just request any of the ties, with no guarantee on which one.
loc <- iv_locate_follows(x, y, closest = TRUE, multiple = "any")
loc

iv_align(x, y, locations = loc)

# ---------------------------------------------------------------------------

a <- iv(NA, NA)
b <- iv(c(NA, NA), c(NA, NA))

# By default, missing intervals in `needles` are seen as exactly equal to
# missing intervals in `haystack`, which means that they overlap
iv_locate_overlaps(a, b)

# If you'd like missing intervals in `needles` to always be considered
# unmatched, set `missing = NA`
iv_locate_overlaps(a, b, missing = NA)

[Package ivs version 0.2.0 Index]