GRApprox {iterLap} | R Documentation |
Gelman-Rubin mode approximation
Description
Performs the multiple mode approximation of Gelman-Rubin (applies a Laplace approximation to each mode). The weights are determined corresponding to the height of each mode.
Usage
GRApprox(post, start, grad, method = c("nlminb", "nlm", "Nelder-Mead", "BFGS"),
control = list(), ...)
Arguments
post |
log-posterior density. |
start |
vector of starting values if dimension=1 otherwise matrix of starting values with the starting values in the rows |
grad |
gradient of log-posterior |
method |
Which optimizer to use |
control |
Control list for the chosen optimizer |
... |
Additional arguments for log-posterior density specified in |
Value
Produces an object of class mixDist. That a list mit entries
weights
Vector of weights for individual components
means
Matrix of component medians of components
sigmas
List containing scaling matrices
eigenHess
List containing eigen decompositions of scaling matrices
dets
Vector of determinants of scaling matrix
sigmainv
List containing inverse scaling matrices
Author(s)
Bjoern Bornkamp
References
Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. (2003) Bayesian Data Analysis, 2nd edition, Chapman and Hall. (Chapter 12)
Bornkamp, B. (2011). Approximating Probability Densities by Iterated Laplace Approximations, Journal of Computational and Graphical Statistics, 20(3), 656–669.
See Also
Examples
## log-density for banana example
banana <- function(pars, b, sigma12){
dim <- 10
y <- c(pars[1], pars[2]+b*(pars[1]^2-sigma12), pars[3:dim])
cc <- c(1/sqrt(sigma12), rep(1, dim-1))
return(-0.5*sum((y*cc)^2))
}
start <- rbind(rep(0,10),rep(-1.5,10),rep(1.5,10))
## multiple mode Laplace approximation
aa <- GRApprox(banana, start, b = 0.03, sigma12 = 100)
## print mixDist object
aa
## summary method
summary(aa)
## importance sampling using the obtained mixDist object
## using a mixture of t distributions with 10 degrees of freedom
dd <- IS(aa, nSim=1000, df = 10, post=banana, b = 0.03,
sigma12 = 100)
## effective sample size
dd$ESS