mitdr {itdr} | R Documentation |
Integral Transformation Methods for SDR Subspaces in Multivariate Regression
Description
The “mitdr()” function implements transformation method for multivariate regression
Usage
mitdr(X,Y,d,m,method="FT-IRE",
lambda=NA,noB = 5,noC = 20,noW = 2,sparse.cov = FALSE, x.scale = FALSE)
Arguments
X |
Design matrix with dimension n-by-p |
Y |
Response matrix with dimension n-by-q |
d |
Structure dimension (default 2). |
m |
The number of omegas, i.e., 2m number of integral transforms |
method |
(default “FT-IRE”) Specify the method of dimension reduction. Other possible choices are “FT-DIRE”,“FT-SIRE”,“FT-RIRE”, “FT-DRIRE”, and “admmft”. |
lambda |
Tuning Parameter for “admmft” method. If it is not provided, the optimal lambda value is chosen by cross-validation of the Fourier transformation method. |
noB |
(default 5) Iterations for updating B. Only required for the “admmft” method. |
noC |
(default 20) Iterations for updating C. Only required for the “admmft” method. |
noW |
(default 2) Iterations for updating weight. Only required for the “admmft” method. |
sparse.cov |
(default FALSE) If TRUE, calculates the soft-threshold matrix. Only required for the “admmft” method. |
x.scale |
(default FALSE) If TRUE, standardizes each variable for the soft-threshold matrix. Only required for the “admmft” method. |
Details
The “mitdr()” function selects the sufficient variables using Fourier transformation sparse inverse regression estimators.
Value
The function output is a p-by-d matrix and the estimated covariance matrix.
Beta_hat |
An estimator for the SDR subspace. |
sigma_X |
Estimated covariance matrix only from the “admmft” method and a null matrix for other methods. |
References
Weng, J. (2022), Fourier Transform Sparse Inverse Regression Estimators for Sufficient Variable Selection, Computational Statistics & Data Analysis, 168, 107380.
Weng, J., & Yin, X. (2022). A Minimum Discrepancy Approach with Fourier Transform in Sufficient Dimension Reduction. Statistica Sinica, 32.
Examples
## Not run:
data(prostate)
Y <- as.matrix(prostate[, 9])
X <- as.matrix(prostate[, -9])
fit.ftire <- mitdr(X, Y, d = 1, method = "FT-DRIRE")
fit.ftire$Beta_hat
## End(Not run)