d.test {itdr} | R Documentation |
Dimension Selection Testing Methods for the Central Mean Subspace.
Description
The “d.test()” function provides p-values for the hypothesis tests for the dimension of the subpsace. It employs three test statistics: Cook's test, Scaled test, and Adjusted test, using Fourier transform approach for inverse dimension reduction method.
Usage
d.test(y,x,m)
Arguments
y |
The n-dimensional response vector. |
x |
The design matrix of the predictors with dimension n-by-p. |
m |
An integer specifying the dimension of the central mean reduction subspace to be tested. |
Details
The null and alternative hypothesis are
H_0: d=m
H_a: d>m
1. Weighted Chi-Square test statistics (Weng and Yin, 2018):
\hat{\Lambda}=n\sum_{j=m+1}^{p}\hat{\lambda}_j,
where \lambda_j
's are the eigenvalues of \widehat{\textbf{V}}
, defined under the “invFM()” function.
2. Scaled test statistic (Bentler and Xie, 2000):
\overline{T}_m=[trace(\hat{\Omega}_n)/p^{\star}]^{-1}n\sum_{j=m+1}^{p}\hat{\lambda}_j \sim \mathcal{X}^2_{p^{\star}},
where \hat{\Omega}_n
is a covariance matrix, and p^{\star} = (p-m)(2t-m)
.
3. Adjusted test statistic (Bentler and Xie, 2000):
\tilde{T}_m=[trace(\hat{\Omega}_n)/d^{\star}]^{-1}n\sum_{j=m+1}^{p}\hat{\lambda}_j \sim \mathcal{X}^2_{d^{\star}},
where d^{\star} = [trace(\hat{\Omega}_n)]^{2}/trace(\hat{\Omega}_n^2)
.
Value
The d.test() function returns a table of p-values for each test.
References
Bentler P. M., and Xie, J. (2000). Corrections to Test Statistics in Principal Hessian Directions. Statistics and Probability Letters. 47, 381-389.
Weng J., and Yin X. (2018). Fourier Transform Approach for Inverse Dimension Reduction Method. Journal of Nonparametric Statistics. 30, 4, 1029-0311.
Examples
data(pdb)
colnames(pdb) <- NULL
p <- 15
df <- pdb[, c(79, 73, 77, 103, 112, 115, 124, 130, 132, 145, 149, 151, 153, 155, 167, 169)]
dff <- as.matrix(df)
planingdb <- dff[complete.cases(dff), ]
y <- planingdb[, 1]
x <- planingdb[, c(2:(p + 1))]
x <- x + 0.5
xt <- cbind(
x[, 1]^(.33), x[, 2]^(.33), x[, 3]^(.57), x[, 4]^(.33), x[, 5]^(.4),
x[, 6]^(.5), x[, 7]^(.33), x[, 8]^(.16), x[, 9]^(.27), x[, 10]^(.5),
x[, 11]^(.5), x[, 12]^(.33), x[, 13]^(.06), x[, 14]^(.15), x[, 15]^(.1)
)
m <- 1
W <- sapply(1, rnorm)
d.test(y, x, m)