EstDimRMT {isva}R Documentation

Estimates dimensionality of a data set using Random Matrix Theory

Description

Given the data matrix, it estimates the number of significant components of variation by comparing the observed distribution of spectral eigenvalues to the theoretical one under a Gaussian Orthogonal Ensemble (GOE). Specifically, a spectral decomposition of the data covariance matrix is performed and the number of eigenvalues larger than the theoretical maximum predicted by the GOE is taken as an estimate of the number of significant components.

Usage

EstDimRMT(data.m,plot=TRUE)

Arguments

data.m

Data matrix. Rows label features, Columns samples.

plot

Logical. Plots Eigenvalue densities if true.

Value

A list with following objects

cor

Data covariance matrix.

dim

Estimated intrinsic dimensionality of data.

estdens

Empirical density of eigenvalues.

thdens

Theoretical density of eigenvalues.

Author(s)

Andrew E Teschendorff

References

Random matrix approach to cross correlations in financial data. Plerou et al. Physical Review E (2002), Vol.65.

Examples

## see example for DoISVA

[Package isva version 1.9 Index]