crps {isodistrreg} | R Documentation |
Continuous ranked probability score (CRPS)
Description
Computes the CRPS of IDR or raw forecasts.
Usage
crps(predictions, y)
## S3 method for class 'idr'
crps(predictions, y)
## S3 method for class 'data.frame'
crps(predictions, y)
Arguments
predictions |
either an object of class |
y |
a numeric vector of obervations of the same length as the number of
predictions, or of length 1. In the latter case, |
Details
This function uses adapted code taken from the function crps_edf
of
the scoringRules package.
Value
A vector of CRPS values.
References
Jordan A., Krueger F., Lerch S. (2018). "Evaluating Probabilistic Forecasts with scoringRules." Journal of Statistical Software. Forthcoming.
Gneiting, T. and Raftery, A. E. (2007), 'Strictly proper scoring rules, prediction, and estimation', Journal of the American Statistical Association 102(477), 359-378
See Also
Examples
data("rain")
## Postprocess HRES forecast using data of 3 years
X <- rain[1:(3 * 365), "HRES", drop = FALSE]
y <- rain[1:(3 * 365), "obs"]
fit <- idr(y = y, X = X)
## Compute CRPS of postprocessed HRES forecast using data of the next 2 years
## (out-of-sample predictions)
data <- rain[(3 * 365 + 1):(5 * 365), "HRES", drop = FALSE]
obs <- rain[(3 * 365 + 1):(5 * 365), "obs"]
predictions <- predict(fit, data = data)
idrCrps <- crps(predictions, y = obs)
## Compare this to CRPS of the raw ensemble of all forecasts (high resolution,
## control and 50 perturbed ensemble forecasts)
rawData <- rain[(3 * 365 + 1):(5 * 365), c("HRES", "CTR", paste0("P", 1:50))]
rawCrps <- crps(rawData, y = obs)
c("idr_HRES" = mean(idrCrps), "raw_all" = mean(rawCrps))