eq.test {isocir} | R Documentation |
Test of Equality of Circular Orders
Description
This function calculates the test of equality of circular orders in different populations.
Usage
eq.test(data, popu, ws=NULL, method=NULL, control.method=NULL, output=NULL, coef=1, N=500)
Arguments
data |
matrix or data.frame with the data. See details. |
popu |
a numeric vector with population to each experiment belongs. |
ws |
a numeric vector with the values to be used as weight per experiment. |
method |
The method to be used to aggregate circular orders with ACO function. |
control.method |
The argument to control the method in ACO function. |
output |
The path where write the output of the global orders. |
coef |
The coefficient to use in case of method=TSP, by default 1. |
N |
The number of randomization selections, by default 500. |
Details
This function performs the test to constrast equality of circular orders:
\hspace{1.7cm}H_{0}:
The circular parameters follow the same circular order in all populations.
\hspace{1.7cm}H_{1}:\hspace{0.1cm}H_{0}
is not true.
The data
must have the elements in the columns and the experiments in the rows.
Value
The output is a list with the following values:
allorders |
matrix, in each row the circular order obtained with all selected experiments and the value for the statistic test in that selection. |
pvalue |
numeric, it is the p-value what results of the test. |
global_order |
numeric vector with the elements ordered as the global circular order estimate. |
CC |
numeric, the confidence coefficient (in percentage) of the global order. |
MFO |
numeric vector with the elements ordered as the Most Frequent global Order in the randomization procedure. |
CCMFO |
numeric, the confidence coefficient (in percentage) of the Most Frequent global Order. |
Two additional outputs could be obtained in the form of .csv files written in the path given by the user in the argument output
:
globalorders.csv |
all the global orders obtained from the randomization procedure and the value of the statistic in each selection. |
frequencydist.csv |
the frequency distribution of all the global orders. |
Author(s)
Author(s): Sandra Barrag?n. Maintainer:<sandra.barragan@gmail.com>
References
Rueda, C., Fernandez, M. A. and Peddada, S. D. (2009). Estimation of parameters subject to order restrictions on a circle with application to estimation of phase angles of cell-cycle genes. Journal of the American Statistical Association, 104, n485; pp 338–347. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2742472/
Fernandez, M. A., Rueda, C. and Peddada, S. D. (2012). Identification of a core set of signature cell cycle genes whose relative order of time to peak expression is conserved across species, Nucl. Acids Res. 40, n7: pp 2823–2832. doi:10.1093/nar/gkr1077. https://academic.oup.com/nar/article/40/7/2823/1183140
Barragan, S., Rueda, C., Fernandez, M.A. and Peddada, S.D. (2015). Determination of Temporal Order among the Components of an Oscillatory System. PLOS ONE. 10, n7: pp 1–14. doi: 10.1371/journal.pone.0124842. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4495067/
See Also
ACO
, CIRE
,sce
, mrl
, isocir
, plot.isocir
.
Examples
data(cirgenes)
eq.test(cirgenes[-8,c(1:5)], popu=c(rep(1,5),rep(2,4)),
ws=c(1,2,3.5,2,1,8,4.2,1.35,6), method="TSP",control.method="alpha3",N=2)