info {irtQ} | R Documentation |
Item and Test Information Function
Description
This function computes both item and test information functions (Hambleton et al., 1991) given a set of theta values.
Usage
info(x, ...)
## Default S3 method:
info(x, theta, D = 1, tif = TRUE, ...)
## S3 method for class 'est_item'
info(x, theta, tif = TRUE, ...)
## S3 method for class 'est_irt'
info(x, theta, tif = TRUE, ...)
Arguments
x |
A data frame containing the item metadata (e.g., item parameters, number of categories, models ...), an object of class |
... |
Further arguments passed to or from other methods. |
theta |
A vector of theta values where item and test information values are computed. |
D |
A scaling factor in IRT models to make the logistic function as close as possible to the normal ogive function (if set to 1.7). Default is 1. |
tif |
A logical value. If TRUE, the test information function is computed. Default is TRUE. |
Details
A specific form of a data frame should be used for the argument x
. The first column should have item IDs,
the second column should contain unique score category numbers of the items, and the third column should include IRT models being fit to the items.
The available IRT models are "1PLM", "2PLM", "3PLM", and "DRM" for dichotomous item data, and "GRM" and "GPCM" for polytomous item data.
Note that "DRM" covers all dichotomous IRT models (i.e, "1PLM", "2PLM", and "3PLM") and "GRM" and "GPCM" represent the graded
response model and (generalized) partial credit model, respectively. The next columns should include the item parameters of the fitted IRT models.
For dichotomous items, the fourth, fifth, and sixth columns represent the item discrimination (or slope), item difficulty, and
item guessing parameters, respectively. When "1PLM" and "2PLM" are specified in the third column, NAs should be inserted in the sixth column
for the item guessing parameters. For polytomous items, the item discrimination (or slope) parameters should be included in the
fourth column and the item difficulty (or threshold) parameters of category boundaries should be contained from the fifth to the last columns.
When the number of unique score categories differs between items, the empty cells of item parameters should be filled with NAs.
In the irtQ package, the item difficulty (or threshold) parameters of category boundaries for GPCM are expressed as
the item location (or overall difficulty) parameter subtracted by the threshold parameter for unique score categories of the item.
Note that when an GPCM item has K unique score categories, K-1 item difficulty parameters are necessary because
the item difficulty parameter for the first category boundary is always 0. For example, if an GPCM item has five score categories,
four item difficulty parameters should be specified. An example of a data frame with a single-format test is as follows:
ITEM1 | 2 | 1PLM | 1.000 | 1.461 | NA |
ITEM2 | 2 | 2PLM | 1.921 | -1.049 | NA |
ITEM3 | 2 | 3PLM | 1.736 | 1.501 | 0.203 |
ITEM4 | 2 | 3PLM | 0.835 | -1.049 | 0.182 |
ITEM5 | 2 | DRM | 0.926 | 0.394 | 0.099 |
And an example of a data frame for a mixed-format test is as follows:
ITEM1 | 2 | 1PLM | 1.000 | 1.461 | NA | NA | NA |
ITEM2 | 2 | 2PLM | 1.921 | -1.049 | NA | NA | NA |
ITEM3 | 2 | 3PLM | 0.926 | 0.394 | 0.099 | NA | NA |
ITEM4 | 2 | DRM | 1.052 | -0.407 | 0.201 | NA | NA |
ITEM5 | 4 | GRM | 1.913 | -1.869 | -1.238 | -0.714 | NA |
ITEM6 | 5 | GRM | 1.278 | -0.724 | -0.068 | 0.568 | 1.072 |
ITEM7 | 4 | GPCM | 1.137 | -0.374 | 0.215 | 0.848 | NA |
ITEM8 | 5 | GPCM | 1.233 | -2.078 | -1.347 | -0.705 | -0.116 |
See IRT Models
section in the page of irtQ-package
for more details about the IRT models used in the irtQ package.
An easier way to create a data frame for the argument x
is by using the function shape_df
.
Value
This function returns an object of class info
. This object contains item and test information values
given the specified theta values.
Methods (by class)
-
default
: Default method to compute item and test information functions for a data framex
containing the item metadata. -
est_item
: An object created by the functionest_item
. -
est_irt
: An object created by the functionest_irt
.
Author(s)
Hwanggyu Lim hglim83@gmail.com
References
Hambleton, R. K., & Swaminathan, H. (1985) Item response theory: Principles and applications. Boston, MA: Kluwer.
Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991) Fundamentals of item response theory. Newbury Park, CA: Sage.
See Also
Examples
## example 1.
## using the function "shape_df" to create a data frame of test metadata
# create a list containing the dichotomous item parameters
par.drm <- list(a=c(1.1, 1.2, 0.9, 1.8, 1.4),
b=c(0.1, -1.6, -0.2, 1.0, 1.2),
g=rep(0.2, 5))
# create a list containing the polytomous item parameters
par.prm <- list(a=c(1.4, 0.6),
d=list(c(-1.9, 0.0, 1.2), c(0.4, -1.1, 1.5, 0.2)))
# create a numeric vector of score categories for the items
cats <- c(2, 4, 2, 2, 5, 2, 2)
# create a character vector of IRT models for the items
model <- c("DRM", "GRM", "DRM", "DRM", "GPCM", "DRM", "DRM")
# create an item metadata set
test <- shape_df(par.drm=par.drm, par.prm=par.prm,
cats=cats, model=model) # create a data frame
# set theta values
theta <- seq(-2, 2, 0.1)
# compute item and test information values given the theta values
info(x=test, theta=theta, D=1, tif=TRUE)
## example 2.
## using a "-prm.txt" file obtained from a flexMIRT
# import the "-prm.txt" output file from flexMIRT
flex_prm <- system.file("extdata", "flexmirt_sample-prm.txt",
package = "irtQ")
# read item parameters and transform them to item metadata
test_flex <- bring.flexmirt(file=flex_prm, "par")$Group1$full_df
# set theta values
theta <- seq(-2, 2, 0.1)
# compute item and test information values given the theta values
info(x=test_flex, theta=theta, D=1, tif=TRUE)