dataLS {irboost} | R Documentation |
generate random data for classification as in Long and Servedio (2010)
Description
generate random data for classification as in Long and Servedio (2010)
Usage
dataLS(ntr, ntu = ntr, nte, percon)
Arguments
ntr |
number of training data |
ntu |
number of tuning data, default is the same as |
nte |
number of test data |
percon |
proportion of contamination, must between 0 and 1. If |
Value
a list with elements xtr, xtu, xte, ytr, ytu, yte for predictors of disjoint training, tuning and test data, and response variable -1/1 of training, tuning and test data.
Author(s)
Zhu Wang
Maintainer: Zhu Wang zhuwang@gmail.com
References
P. Long and R. Servedio (2010), Random classification noise defeats all convex potential boosters, Machine Learning Journal, 78(3), 287–304.
Examples
dat <- dataLS(ntr=100, nte=100, percon=0)
[Package irboost version 0.1-1.5 Index]