EstValidation {ipwErrorY} | R Documentation |
Estimation of ATE with Validation Data
Description
Estimation of average treatment effect using the optimal linear combination method when misclassification probabilities are unknown but validation data are available
Usage
EstValidation(maindata, validationdata, indA, indYerror, indX, indY,
confidence = 0.95)
Arguments
maindata |
The non-validation main data in the form of R data frame without missing data |
validationdata |
The validation data in the form of R data frame without missing data |
indA |
A column name indicating the binary treatment variable |
indYerror |
A column name indicating the misclassified binary outcome variable |
indX |
A vector of column names indicating the covariates included in the treatment model |
indY |
A column name indicating the true binary outcome variable |
confidence |
The confidence level between 0 and 1; the default is 0.95 corresponding to a 95 per cent confidence interval |
Value
A list of the estimate of average treatment effect, sandwich-variance-based standard error, confidence interval, and the estimated sensitivity and specificity
Examples
#create main data and validation data with sensitivity=0.95 and specificity=0.85
set.seed(100)
X1=rnorm(1200)
A=rbinom(1200,1,1/(1+exp(-0.2-X1)))
Y=rbinom(1200,1,1/(1+exp(-0.2-A-X1)))
y1=which(Y==1)
y0=which(Y==0)
Yast=Y
Yast[y1]=rbinom(length(y1),1,0.95)
Yast[y0]=rbinom(length(y0),1,0.15)
mainda=data.frame(A=A,X1=X1,Yast=Yast)
X1=rnorm(800)
A=rbinom(800,1,1/(1+exp(-0.2-X1)))
Y=rbinom(800,1,1/(1+exp(-0.2-A-X1)))
y1=which(Y==1)
y0=which(Y==0)
Yast=Y
Yast[y1]=rbinom(length(y1),1,0.95)
Yast[y0]=rbinom(length(y0),1,0.15)
validationda=data.frame(A=A,X1=X1,Y=Y,Yast=Yast)
head(mainda)
head(validationda)
#apply the optimal linear combination correction method
EstValidation(mainda,validationda,"A","Yast","X1","Y",0.95)