simY {ipsfs}R Documentation

IFS similarity measure simY

Description

IFS similarity measure values using simY computation technique with membership, and non-membership values of two objects or set of objects.

Usage

simY(ma, na, mb, nb, k)

Arguments

ma

IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function

na

IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function

mb

IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function

nb

IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function

k

A constant value, considered as 1

Value

The IFS similarity values of data set y with data set x

References

J. Ye. Cosine similarity measures for intuitionistic fuzzy sets and their applications. Mathematical and computer modelling, 53(1-2):91 - 97, 2011.

Examples

x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simY(ma,na,mb,nb,k)
#[1] 0.9024655 0.8950394 0.9898896 0.9898896

[Package ipsfs version 1.0.0 Index]