simSWLX {ipsfs} | R Documentation |
IFS similarity measure simSWLX
Description
IFS similarity measure values using simSWLX computation technique with membership,non-membership, and hesitancy values of two objects or set of objects.
Usage
simSWLX(ma, na, mb, nb, ha, hb, k)
Arguments
ma |
IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
ha |
IFS hesitancy values for the data set x |
hb |
IFS hesitancy values for the data set y |
k |
A constant value, considered as 1 |
Value
The IFS similarity values of data set y with data set x
References
Y. Song, X. Wang, L. Lei, and A. Xue. A new similarity measure between intuitionistic fuzzy sets and its application to pattern recognition. In Abstract and Applied Analysis, volume 2014. Hindawi, 2014.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ha<-hmemIFS(ma,na)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
hb<-hmemIFS(mb,nb)
k<-1
simSWLX(ma,na,mb,nb,ha,hb,k)
#[1] 0.9241207 0.9180258 0.9853267 0.9853267