simP {ipsfs} | R Documentation |
PFS similarity measure simP
Description
PFS similarity measure values using simP computation technique with membership, and non-membership values of two objects or set of objects.
Usage
simP(ma, na, mb, nb, a, b, p, t, k)
Arguments
ma |
PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
a |
Level of uncertainty values, values range from 1 to 10 |
b |
Level of uncertainty values, values range from 1 to 10 |
p |
Lp norm values for measuring the p-norm distance between x and y, values range from 1 to 5 |
t |
Level of uncertainty values, values range from 1 to 10 |
k |
A constant value, considered as 1 |
Value
The PFS similarity values of data set y with data set x
References
X. Peng. New similarity measure and distance measure for pythagorean fuzzy set. Complex & Intelligent Systems, 5(2):101 - 111, 2019.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
a<-2
b<-2
p<-2
t<-2
k<-1
simP(ma,na,mb,nb,a,b,p,t,k)
#[1] 0.7007663 0.6879639 0.8834981 0.8834981