simNNNG2 {ipsfs} | R Documentation |
PFS similarity measure simNNNG2
Description
PFS similarity measure values using simNNNG2 computation technique with membership, and non-membership values of two objects or set of objects.
Usage
simNNNG2(ma, na, mb, nb, k)
Arguments
ma |
PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
k |
A constant value, considered as 1 |
Value
The PFS similarity values of data set y with data set x
References
X. T. Nguyen, V. D. Nguyen, V. H. Nguyen, and H. Garg. Exponential similarity measures for pythagorean fuzzy sets and their applications to pattern recognition and decision-making process. Complex & Intelligent Systems, 5(2):217 - 228, 2019.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simNNNG2(ma,na,mb,nb,k)
#[1] 0.7761019 0.7803072 0.9079870 0.9079870