simJJLY {ipsfs} | R Documentation |
IFS similarity measure simJJLY
Description
IFS similarity measure values using simJJLY computation technique with membership,non-membership, and hesitancy values of two objects or set of objects.
Usage
simJJLY(ma, na, mb, nb, ha, hb, k)
Arguments
ma |
IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
ha |
IFS hesitancy values for the data set x |
hb |
IFS hesitancy values for the data set y |
k |
A constant value, considered as 1 |
Value
The IFS similarity values of data set y with data set x
References
Q. Jiang, X. Jin, S.-J. Lee, and S. Yao. A new similarity/distance measure between intuitionistic fuzzy sets based on the transformed isosceles triangles and its applications to pattern recognition. Expert Systems with Applications, 116:439–453, 2019.
Examples
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ha<-hmemIFS(ma,na)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
hb<-hmemIFS(mb,nb)
k<-1
simJJLY(ma,na,mb,nb,ha,hb,k)
#[1] 0.7239098 0.7245767 0.8981760 0.8981760