ipflasso.predict {ipflasso} | R Documentation |
Using an IPF-lasso model for prediction of new observations
Description
Derives predictions for new observations from a model fitted by the functions cvr.ipflasso
or cvr2.ipflasso
.
Usage
ipflasso.predict(object, Xtest)
Arguments
object |
the output of either |
Xtest |
a ntest x p matrix containing the values of the predictors for the test data. It should have the same number of columns as the matrix |
Value
A list with the following arguments:
linpredtest |
a ntest-vector giving the value of the linear predictor for the test observations |
classtest |
a ntest-vector with values 0 or 1 giving the predicted class for the test observations (for binary Y). |
probabilitiestest |
a ntest-vector giving the predicted probability of Y=1 for the test observations (for binary Y). |
Author(s)
Anne-Laure Boulesteix (https://www.en.ibe.med.uni-muenchen.de/mitarbeiter/professoren/boulesteix/index.html)
References
Boulesteix AL, De Bin R, Jiang X, Fuchs M, 2017. IPF-lasso: integrative L1-penalized regression with penalty factors for prediction based on multi-omics data. Comput Math Methods Med 2017:7691937.
Examples
# load ipflasso library
library(ipflasso)
# generate dummy data
X<-matrix(rnorm(50*200),50,200)
Xtest<-matrix(rnorm(20*200),20,200)
Y<-rbinom(50,1,0.5)
# fitting the IPF-lasso model
model1<-cvr.ipflasso(X=X,Y=Y,family="binomial",standardize=FALSE,
blocks=list(block1=1:50,block2=51:200),
pf=c(1,2),nfolds=5,ncv=10,type.measure="class")
# making predictions from Xtest
ipflasso.predict(object=model1,Xtest=Xtest)