paretoXY {iopsych} | R Documentation |
Computes data needed for a XY Pareto plot.
Description
Computes data needed for a XY Pareto plot.
Usage
paretoXY(r_mat, x_col, y_col, d_vec, gen = 100, pop = 100,
pred_lower = rep(-2, length(x_col)), pred_upper = rep(2, length(x_col)))
Arguments
r_mat |
A correlation matrix. |
x_col |
A vector of columns representing predictor variables. |
y_col |
A vector of columns representing criterion variables. |
d_vec |
A vector of d scores. |
gen |
The number of iterations used by the algorithim. |
pop |
The population or number of cases used by the algorithim. |
pred_lower |
The minimum weight allowed for each predictor. |
pred_upper |
The maximum weight allowed for each predictor. |
Value
betasA matrix of beta weights for each criteria weight
mr_dA matrix of multiple correlations or d values corresponding to each row of beta weights.
pareto_optimalA vector indicating whether each value is pareto optimal
Author(s)
Allen Goebl Jeff Jones
Examples
data(dls2007)
dat <- dls2007
r_mat <- dat[1:6, 2:7]
x_col <- 1:4
y_col <- 5:6
d_vec <- dat[1:4, 1]
paretoXY(r_mat=r_mat, x_col=1:4, y_col=5, d_vec=d_vec, pred_lower=c(0,0,0,0))
paretoXY(r_mat=r_mat, x_col=1:4, y_col=c(5,6))
[Package iopsych version 0.90.1 Index]