invgamma {invgamma} | R Documentation |
The Inverse Gamma Distribution
Description
Density, distribution function, quantile function and random generation for the inverse gamma distribution.
Usage
dinvgamma(x, shape, rate = 1, scale = 1/rate, log = FALSE)
pinvgamma(q, shape, rate = 1, scale = 1/rate, lower.tail = TRUE,
log.p = FALSE)
qinvgamma(p, shape, rate = 1, scale = 1/rate, lower.tail = TRUE,
log.p = FALSE)
rinvgamma(n, shape, rate = 1, scale = 1/rate)
Arguments
x , q |
vector of quantiles. |
shape |
inverse gamma shape parameter |
rate |
inverse gamma rate parameter |
scale |
alternative to rate; scale = 1/rate |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x] otherwise, P[X > x]. |
p |
vector of probabilities. |
n |
number of observations. If length(n) > 1, the length is taken to be the number required. |
Details
The inverse gamma distribution with parameters shape and rate has density f(x) = rate^shape/Gamma(shape) x^(-1-shape) e^(-rate/x) it is the inverse of the standard gamma parameterzation in R.
The functions (d/p/q/r)invgamma simply wrap those of the standard
(d/p/q/r)gamma R implementation, so look at, say,
dgamma
for details.
See Also
dgamma
; these functions just wrap the
(d/p/q/r)gamma functions.
Examples
s <- seq(0, 5, .01)
plot(s, dinvgamma(s, 7, 10), type = 'l')
f <- function(x) dinvgamma(x, 7, 10)
q <- 2
integrate(f, 0, q)
(p <- pinvgamma(q, 7, 10))
qinvgamma(p, 7, 10) # = q
mean(rinvgamma(1e5, 7, 10) <= q)