NormalizedLaplacian {invertiforms}R Documentation

Construct and use the Normalized Laplacian

Description

A convenience function to create NormalizedLaplacian S4 objects, which are useful for finding the normalized Laplacian of the adjacency matrix of a graph.

Usage

NormalizedLaplacian(A)

## S4 method for signature 'NormalizedLaplacian,sparseMatrix'
transform(iform, A)

## S4 method for signature 'NormalizedLaplacian,sparseMatrix'
inverse_transform(iform, A)

Arguments

A

A matrix to transform.

iform

An Invertiform object describing the transformation.

Details

We define the normalized Laplacian L(A) of an n \times n graph adjacency matrix A as

L(A)_{ij} = \frac{A_{ij}}{\sqrt{d^{out}_i} \sqrt{d^{in}_j}}

where

d^{out}_i = \sum_{j=1}^n \| A_{ij} \|

and

d^{in}_j = \sum_{i=1}^n \| A_{ij} \|.

When A_{ij} denotes the present of an edge from node i to node j, which is fairly standard notation, d^{out}_i denotes the (absolute) out-degree of node i and d^{in}_j denotes the (absolute) in-degree of node j.

Note that this documentation renders most clearly at https://rohelab.github.io/invertiforms/.

Value

Examples


library(igraph)
library(igraphdata)

data("karate", package = "igraphdata")

A <- get.adjacency(karate)

iform <- NormalizedLaplacian(A)

L <- transform(iform, A)
A_recovered <- inverse_transform(iform, L)

all.equal(A, A_recovered)


[Package invertiforms version 0.1.1 Index]