TFRP {intrinsicFRP} | R Documentation |
Tradable factor risk premia.
Description
Computes tradable factor risk premia from data on factors F
and
test asset excess returns R
:
TFRP = Cov[F, R] * Var[R]^{-1} * E[R]
;
which are by construction the negative covariance of factors F
with
the SDF projection on asset returns, i.e., the minimum variance SDF.
Optionally computes the corresponding heteroskedasticity and autocorrelation
robust standard errors using the Newey-West (1994) doi:10.2307/2297912
plug-in procedure to select the number of relevant lags, i.e.,
n_lags = 4 * (n_observations/100)^(2/9)
.
For the standard error computations, the function allows to internally
pre-whiten the series by fitting a VAR(1),
i.e., a vector autoregressive model of order 1.
All details are found in Quaini-Trojani-Yuan (2023) doi:10.2139/ssrn.4574683.
Usage
TFRP(
returns,
factors,
include_standard_errors = FALSE,
hac_prewhite = FALSE,
check_arguments = TRUE
)
Arguments
returns |
A |
factors |
A |
include_standard_errors |
A boolean: |
hac_prewhite |
A boolean indicating if the series needs prewhitening by
fitting an AR(1) in the internal heteroskedasticity and autocorrelation
robust covariance (HAC) estimation. Default is |
check_arguments |
A boolean: |
Value
A list containing n_factors
-dimensional vector of tradable factor
risk premia in "risk_premia"
; if include_standard_errors=TRUE
, then
it further includes n_factors
-dimensional vector of tradable factor risk
premia standard errors in "standard_errors"
.
Examples
# import package data on 6 risk factors and 42 test asset excess returns
factors = intrinsicFRP::factors[,-1]
returns = intrinsicFRP::returns[,-1]
# compute tradable factor risk premia and their standard errors
tfrp = TFRP(returns, factors, include_standard_errors = TRUE)