ChenFang2019BetaRankTest {intrinsicFRP} | R Documentation |
Asset Pricing Model Identification via Chen-Fang (2019) Beta Rank Test
Description
Tests the null hypothesis of reduced rank in the matrix of regression
loadings for test asset excess returns on risk factors using the Chen-Fang (2019)
doi:10.3982/QE1139
beta rank test. The test applies the Kleibergen-Paap (2006) doi:10.1016/j.jeconom.2005.02.011
iterative rank test
for initial rank estimation when target_level_kp2006_rank_test > 0
, with an
adjustment to level = target_level_kp2006_rank_test / n_factors
. When
target_level_kp2006_rank_test <= 0
, the number of singular values above
n_observations^(-1/4)
is used instead. It presumes that the number of factors
is less than the number of returns (n_factors < n_returns
).
All the details can be found in Chen-Fang (2019)
doi:10.3982/QE1139.
Usage
ChenFang2019BetaRankTest(
returns,
factors,
n_bootstrap = 500,
target_level_kp2006_rank_test = 0.05,
check_arguments = TRUE
)
Arguments
returns |
Matrix of test asset excess returns with dimensions |
factors |
Matrix of risk factors with dimensions |
n_bootstrap |
The number of bootstrap samples to use in the Chen-Fang (2019) test. Defaults to 500 if not specified. |
target_level_kp2006_rank_test |
The significance level for the Kleibergen-Paap (2006)
rank test used for initial rank estimation. If set above 0, it indicates the level for this
estimation within the Chen-Fang (2019) rank test. If set at 0 or negative, the initial rank
estimator defaults to the count of singular values exceeding |
check_arguments |
Logical flag to determine if input arguments should be checked for validity.
Default is |
Value
A list containing the Chen-Fang (2019) rank statistic and the associated p-value.
Examples
# import package data on 6 risk factors and 42 test asset excess returns
factors = intrinsicFRP::factors[,-1]
returns = intrinsicFRP::returns[,-1]
# compute the model identification test
hj_test = ChenFang2019BetaRankTest(returns, factors)