logratio {intervcomp} | R Documentation |
Log Ratio Analysis for the Implicit Association Test (IAT)
Description
Log ratio analysis for the IAT.
Usage
logratio(rt, subject, block_type, trial_num, group,
block_order = c("original", "reverse"), min_limit = 400,
max_limit = 10000, rt_min = 200, correctvec = NULL,
trace = FALSE)
Arguments
rt |
A vector specifying all the reaction times. |
subject |
A vector specifying the subject IDs for the |
block_type |
A vector specifying the block type for the |
trial_num |
A vector specifying the trial number for each observation in the |
group |
A data frame with two columns specifying the subject IDs and corresponding group. There should be two groups. |
block_order |
A character string specifying the order of the two groups. There are two options: "original" puts the first group in the numerator of the ratio, and "reverse" puts the second group in the numerator of the ratio. |
min_limit |
A numeric specifying the lower limit for the reaction times to be included. The default option is 400. |
max_limit |
A numeric specifying the upper limit for the reaction times to be included. The default option is 10000. |
rt_min |
A numeric specifying the minimum time required for reaction. The default option is 200. |
correctvec |
A vector specifying whether or not the response is correct (0 for incorrect, 1 for correct). The default option is NULL, in which case, all the responses are assumed to be correct. |
trace |
A boolean specifying whether or not the progress should be displayed on the screen. The default option is FALSE. |
Value
scores |
A list containing the IAT scores using the log ratio analysis. |
Examples
data(reactiontimes)
data(grouping)
rt <- reactiontimes$rt
subject <- reactiontimes$subId
block_type <- reactiontimes$block_type
trial_num <- reactiontimes$trial_num
block_order <- "reverse"
results <- logratio(rt=rt, subject=subject, block_type=block_type, trial_num=trial_num,
group=grouping, block_order=block_order, trace=TRUE)
femaleRatioLog<-results$`0`
maleRatioLog<-results$`1`
two.sample.var(femaleRatioLog,maleRatioLog,alternative="two.sided",
scale.option="Levene.Med.0",scale.adj=TRUE,paired=FALSE)
Bonett.Seier.test(femaleRatioLog,maleRatioLog,alternative="two.sided")