loglinOR {interactionRCS} | R Documentation |
Linear interaction OR
Description
Generate OR values for a 1 unit increase in a variable at specified points of another interacting variable in a simple logistic interaction model
Usage
loglinOR(
var2values,
model,
data,
var1,
var2,
ci = TRUE,
conf = 0.95,
ci.method = "delta",
ci.boot.method = "perc",
R = 100,
parallel = "multicore",
...
)
Arguments
var2values |
numeric vector of var2 points to estimate |
model |
model of class lrm Glm or glm. If data is NULL, the function expects to find the data in model$x |
data |
data used in the model. If absent, it will attempt to recover the data from the model object. Only used for bootstrap CI |
var1 |
variable that increases by 1 unit from 0 |
var2 |
variable to spline. var2values belong to var2 |
ci |
calculate 95% CI? |
conf |
confidence level. Default 0.95 |
ci.method |
confidence interval method. "delta" performs delta method. "bootstrap" performs bootstrapped CI (slower) |
ci.boot.method |
one of the available bootstrap CI methods from |
R |
number of bootstrap samples if ci.method = "bootstrap". Default 100 |
parallel |
can take values "no", "multicore", "snow" if ci.method = "bootstrap". Default multicore |
... |
other parameters for boot |
Value
if ci = FALSE, a vector of estimate of length(var2values), if ci = TRUE a dataframe with 5 columns, initial values, OR, lower CI, upper CI and SE
Examples
library(rms)
library(mlbench)
data(PimaIndiansDiabetes)
# Set age on a 5-year scale
PimaIndiansDiabetes$age <- PimaIndiansDiabetes$age/5
# Recode diabetes as 0/1
PimaIndiansDiabetes$diabetes <- ifelse(PimaIndiansDiabetes$diabetes=="pos" , 1 , 0)
myformula <- diabetes ~ mass + age * glucose
model <- glm(myformula , data = PimaIndiansDiabetes , family = binomial())
loglinOR( var2values = 20:80
, model = model , data = PimaIndiansDiabetes , var1 ="age", var2="glucose"
, ci=TRUE , conf = 0.95 , ci.method = "delta")