unbiasedKrige {intamap} | R Documentation |
Unbiased kriging
Description
unbiasedKrige
is a function for modifying a kriging prediction
to a prediction that can be assumed to be unbiased for a certain threshold.
Usage
unbiasedKrige(object, formulaString, observations, predictionLocations,
model, outputWhat, yamamoto, iwqmaxit = 500,
iwqCpAddLim = 0.0001, debug.level, ...)
Arguments
object |
either an object of the intamap type (see |
formulaString |
formula that defines the dependent variable as a linear model of independent variables; suppose the dependent variable has name z, for ordinary and simple kriging use the formula z~1; for universal kriging, suppose z is linearly dependent on x and y, use the formula z~x+y |
observations |
a |
predictionLocations |
the predictionLocations, only necessary if the method is "IWQSEL" and formulaString contains independent variables. Should preferentally be a grid if the method is "IWQSEL" |
model |
variogram model of dependent variable (or its residuals), defined
by a call to |
outputWhat |
Argument with type of unbiasedness method ("MOK" or "IWQSEL") and the thresholds. |
yamamoto |
logical describing if the yamamoto approach )is to be used in simulations.
Defaults to yamamoto = FALSE when object is a |
iwqmaxit |
maximum number of iterations in iwqsel |
iwqCpAddLim |
convergence criteria in iwqsel |
debug.level |
debug level, passed to subfunctions |
... |
other arguments that will be passed to subfunctions. These include
|
Details
It is a fact that predictions from kriging tend to be biased towards the mean of
the process. The function unbiasedKrige
is a function that adds one or more predictions
to the original output, which are assumed to be unbiased relative to a certain
threshold. The two methods supported are the IWQSEL-method (Craigmile, 2006) and
MOK (Skoien et al, 2008).
Value
an object of type intamap, as described in intamap-package
, or a
Spatial
*DataFrame with one or more new prediction columns, representing different
methods and thresholds.
Author(s)
Jon Olav Skoien
References
Craigmile, P. F., N. Cressie, T. J. Santner, and Y. Rao. 2006. A loss function approach to identifying environmental exceedances. Extremes, 8, 143-159.
Skoien, J. O., G. B. M. Heuvelink, and E. J. Pebesma. 2008. Unbiased block predictions and exceedance probabilities for environmental thresholds. In: J. Ortiz C. and X. Emery (eds). Proceedings of the eight international geostatistics congress. Gecamin, Santiago, Chile, pp. 831-840.
Pebesma, E., Cornford, D., Dubois, G., Heuvelink, G.B.M., Hristopulos, D., Pilz, J., Stohlker, U., Morin, G., Skoien, J.O. INTAMAP: The design and implementation f an interoperable automated interpolation Web Service. Computers and Geosciences 37 (3), 2011.
Examples
library(automap)
library(gstat)
data(meuse)
data(meuse.grid)
coordinates(meuse) = ~x+y
gridded(meuse.grid) = ~x+y
predictionLocations = meuse.grid[sample(1:length(meuse.grid),50),]
vmod = autofitVariogram(log(zinc)~1,meuse)$var_model
prediction = krige(log(zinc)~1,meuse,predictionLocations,vmod)
summary(prediction)
prediction <- unbiasedKrige(prediction,log(zinc)~1,
meuse, model = vmod, outputWhat = list(MOK = 6.0, MOK = 7.0, IWQSEL=7.0),
iwqmaxit = 100, iwqCpAddLim = 0.01)
summary(prediction)