fit_gam {insurancerating} | R Documentation |
Generalized additive model
Description
Fits a generalized additive model (GAM) to continuous risk factors in one of the following three types of models: the number of reported claims (claim frequency), the severity of reported claims (claim severity) or the burning cost (i.e. risk premium or pure premium).
Usage
fit_gam(
data,
nclaims,
x,
exposure,
amount = NULL,
pure_premium = NULL,
model = "frequency",
round_x = NULL
)
Arguments
data |
data.frame of an insurance portfolio |
nclaims |
column in |
x |
column in |
exposure |
column in |
amount |
column in |
pure_premium |
column in |
model |
choose either 'frequency', 'severity' or 'burning' (model = 'frequency' is default). See details section. |
round_x |
round elements in column |
Details
The 'frequency' specification uses a Poisson GAM for fitting the number of claims. The logarithm of the exposure is included as an offset, such that the expected number of claims is proportional to the exposure.
The 'severity' specification uses a lognormal GAM for fitting the average cost of a claim. The average cost of a claim is defined as the ratio of the claim amount and the number of claims. The number of claims is included as a weight.
The 'burning' specification uses a lognormal GAM for fitting the pure premium of a claim. The pure premium is obtained by multiplying the estimated frequency and the estimated severity of claims. The word burning cost is used here as equivalent of risk premium and pure premium. Note that the functionality for fitting a GAM for pure premium is still experimental (in the early stages of development).
Value
A list with components
prediction |
data frame with predicted values |
x |
name of continuous risk factor |
model |
either 'frequency', 'severity' or 'burning' |
data |
data frame with predicted values and observed values |
x_obs |
observations for continuous risk factor |
Author(s)
Martin Haringa
References
Antonio, K. and Valdez, E. A. (2012). Statistical concepts of a priori and a posteriori risk classification in insurance. Advances in Statistical Analysis, 96(2):187–224. doi:10.1007/s10182-011-0152-7.
Grubinger, T., Zeileis, A., and Pfeiffer, K.-P. (2014). evtree: Evolutionary learning of globally optimal classification and regression trees in R. Journal of Statistical Software, 61(1):1–29. doi:10.18637/jss.v061.i01.
Henckaerts, R., Antonio, K., Clijsters, M. and Verbelen, R. (2018). A data driven binning strategy for the construction of insurance tariff classes. Scandinavian Actuarial Journal, 2018:8, 681-705. doi:10.1080/03461238.2018.1429300.
Wood, S.N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society (B) 73(1):3-36. doi:10.1111/j.1467-9868.2010.00749.x.
Examples
fit_gam(MTPL, nclaims = nclaims, x = age_policyholder,
exposure = exposure)