construct_model_points {insurancerating} | R Documentation |
Construct model points from Generalized Linear Model
Description
construct_model_points()
is used to construct model points from generalized linear models, and must
be preceded by model_data()
. construct_model_points()
can also be used
in combination with a data.frame.
Usage
construct_model_points(
x,
exposure = NULL,
exposure_by = NULL,
agg_cols = NULL,
drop_na = FALSE
)
Arguments
x |
Object of class model_data or of class data.frame |
exposure |
column with exposure |
exposure_by |
split column exposure by (e.g. year) |
agg_cols |
list of columns to aggregate (sum) by, e.g. number of claims |
drop_na |
drop na values (default to FALSE) |
Value
data.frame
Author(s)
Martin Haringa
Examples
## Not run:
# With data.frame
library(dplyr)
mtcars |>
select(cyl, vs) |>
construct_model_points()
mtcars |>
select(cyl, vs, disp) |>
construct_model_points(exposure = disp)
mtcars |>
select(cyl, vs, disp, gear) |>
construct_model_points(exposure = disp, exposure_by = gear)
mtcars |>
select(cyl, vs, disp, gear, mpg) |>
construct_model_points(exposure = disp, exposure_by = gear,
agg_cols = list(mpg))
# With glm
library(datasets)
data1 <- warpbreaks |>
mutate(jaar = c(rep(2000, 10), rep(2010, 44))) |>
mutate(exposure = 1) |>
mutate(nclaims = 2)
pmodel <- glm(breaks ~ wool + tension, data1, offset = log(exposure),
family = poisson(link = "log"))
model_data(pmodel) |>
construct_model_points()
model_data(pmodel) |>
construct_model_points(agg_cols = list(nclaims))
model_data(pmodel) |>
construct_model_points(exposure = exposure, exposure_by = jaar) |>
add_prediction(pmodel)
## End(Not run)
[Package insurancerating version 0.7.4 Index]