| inspect_data_cat_as_dichotom {inspector} | R Documentation |
Validate categorical data as dichotomous
Description
inspect_data_cat_as_dichotom checks if an object contains
valid categorical data that is eligible to be used as dichotomous data. This
can be useful to validate inputs in user-defined functions.
Usage
inspect_data_cat_as_dichotom(
data,
success,
allow_nas = TRUE,
warning_nas = FALSE
)
Arguments
data, success |
Arbitrary objects. |
allow_nas |
Logical value. If |
warning_nas |
Logical value. If |
Details
inspect_data_cat_as_dichotom conducts a series of tests to check
if data contains valid categorical data that is eligible to be used as
dichotomous data. Namely, inspect_data_cat_as_dichotom checks if:
-
dataandsuccessareNULLor empty. -
dataandsuccessare atomic and have an eligible data type (logical, integer, double, character). -
dataandsuccesshaveNAorNaNvalues. -
successhaslength1. -
successis observed indata.
Value
inspect_data_cat_as_dichotom does not return any output. There are
three possible outcomes:
The call is silent if:
-
datacontains valid categorical data that is eligible to be used as dichotomous data and there are noNAorNaNvalues indata. -
datacontains valid categorical data that is eligible to be used as dichotomous data, there are someNAorNaNvalues indata,allow_nasis set toTRUEandwarning_nasis set toFALSE.
-
An informative warning message is thrown if:
-
datacontains valid categorical data that is eligible to be used as dichotomous data andsuccessis not observed indata. -
datacontains valid categorical data that is eligible to be used as dichotomous data, there areNAorNaNvalues indataand bothallow_nasandwarning_nasare set toTRUE.
-
An informative error message is thrown and the execution is stopped if:
-
datadoes not contain valid categorical data that is eligible to be used as dichotomous data. -
datacontains valid categorical data that is eligible to be used as dichotomous data, there are someNAorNaNvalues indataandallow_nasis set toFALSE.
-
See Also
-
inspect_data_categoricalto validate categorical. -
inspect_par_multinomialto validate vectors of Multinomial proportions. -
inspect_data_dichotomousto validate dichotomous data. -
inspect_par_bernoullito validate Bernoulli/Binomial proportions.
Examples
# Calls that pass silently:
x1 <- c(1, 0, 0, 1, 0)
x2 <- c(FALSE, FALSE, TRUE)
x3 <- c("yes", "no", "yes")
x4 <- factor(c("yes", "no", "yes"))
x5 <- c(1, 0, 0, 1, 0, NA)
inspect_data_cat_as_dichotom(x1, success = 1)
inspect_data_cat_as_dichotom(x2, success = TRUE)
inspect_data_cat_as_dichotom(x3, success = "yes")
inspect_data_cat_as_dichotom(x4, success = "yes")
inspect_data_cat_as_dichotom(x5, success = 1)
# Calls that throw an informative warning message:
y1 <- c(1, 1, NA, 0, 0)
y2 <- c(0, 0)
success <- 1
try(inspect_data_cat_as_dichotom(y1, success = 1, warning_nas = TRUE))
try(inspect_data_cat_as_dichotom(y2, success = success))
# Calls that throw an informative error message:
try(inspect_data_cat_as_dichotom(y1, 1, allow_nas = FALSE))
try(inspect_data_cat_as_dichotom(NULL, 1))
try(inspect_data_cat_as_dichotom(c(1, 0), NULL))
try(inspect_data_cat_as_dichotom(list(1, 0), 1))
try(inspect_data_cat_as_dichotom(c(1, 0), list(1)))
try(inspect_data_cat_as_dichotom(numeric(0), 0))
try(inspect_data_cat_as_dichotom(1, numeric(0)))
try(inspect_data_cat_as_dichotom(NaN, 1))
try(inspect_data_cat_as_dichotom(NA, 1))
try(inspect_data_cat_as_dichotom(c(1, 0), NA))
try(inspect_data_cat_as_dichotom(c(1, 0), NaN))
try(inspect_data_cat_as_dichotom(c(1, 0), 2))