find_parameters.glmmTMB {insight} | R Documentation |
Find names of model parameters from mixed models
Description
Returns the names of model parameters, like they typically
appear in the summary()
output.
Usage
## S3 method for class 'glmmTMB'
find_parameters(
x,
effects = c("all", "fixed", "random"),
component = c("all", "conditional", "zi", "zero_inflated", "dispersion"),
flatten = FALSE,
...
)
## S3 method for class 'nlmerMod'
find_parameters(
x,
effects = c("all", "fixed", "random"),
component = c("all", "conditional", "nonlinear"),
flatten = FALSE,
...
)
## S3 method for class 'hglm'
find_parameters(
x,
effects = c("all", "fixed", "random"),
component = c("all", "conditional", "dispersion"),
flatten = FALSE,
...
)
## S3 method for class 'merMod'
find_parameters(x, effects = c("all", "fixed", "random"), flatten = FALSE, ...)
Arguments
x |
A fitted model. |
effects |
Should parameters for fixed effects, random effects or both be returned? Only applies to mixed models. May be abbreviated. |
component |
Which type of parameters to return, such as parameters for
the conditional model, the zero-inflated part of the model or the
dispersion term? Applies to models with zero-inflated and/or dispersion
formula. Note that the conditional component is also called
count or mean component, depending on the model. There are
three convenient shortcuts: |
flatten |
Logical, if |
... |
Currently not used. |
Value
A list of parameter names. The returned list may have following elements:
-
conditional
, the "fixed effects" part from the model. -
random
, the "random effects" part from the model. -
zero_inflated
, the "fixed effects" part from the zero-inflation component of the model. -
zero_inflated_random
, the "random effects" part from the zero-inflation component of the model. -
dispersion
, the dispersion parameters (auxiliary parameter) -
nonlinear
, the parameters from the nonlinear formula.
Examples
data(mtcars)
m <- lm(mpg ~ wt + cyl + vs, data = mtcars)
find_parameters(m)