show_rugs {ingredients} | R Documentation |
Adds a Layer with Rugs to a Profile Plot
Description
Function show_rugs
adds a layer to a plot created with
plot.ceteris_paribus_explainer
for selected observations.
Various parameters help to decide what should be plotted, profiles, aggregated profiles, points or rugs.
Usage
show_rugs(
x,
...,
size = 0.5,
alpha = 1,
color = "#371ea3",
variable_type = "numerical",
sides = "b",
variables = NULL
)
Arguments
x |
a ceteris paribus explainer produced with function |
... |
other explainers that shall be plotted together |
size |
a numeric. Size of lines to be plotted |
alpha |
a numeric between |
color |
a character. Either name of a color or name of a variable that should be used for coloring |
variable_type |
a character. If |
sides |
a string containing any of "trbl", for top, right, bottom, and left. Passed to geom rug. |
variables |
if not |
Value
a ggplot2
layer
References
Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/
Examples
library("DALEX")
library("ingredients")
titanic_small <- select_sample(titanic_imputed, n = 500, seed = 1313)
# build a model
model_titanic_glm <- glm(survived ~ gender + age + fare,
data = titanic_small,
family = "binomial")
explain_titanic_glm <- explain(model_titanic_glm,
data = titanic_small[,-8],
y = titanic_small[,8])
cp_glm <- ceteris_paribus(explain_titanic_glm, titanic_small[1,])
cp_glm
library("ranger")
rf_model <- ranger(survived ~., data = titanic_imputed, probability = TRUE)
explainer_rf <- explain(rf_model,
data = titanic_imputed[,-8],
y = titanic_imputed[,8],
label = "ranger forest",
verbose = FALSE)
selected_passangers <- select_sample(titanic_imputed, n = 100)
cp_rf <- ceteris_paribus(explainer_rf, selected_passangers)
cp_rf
plot(cp_rf, variables = "age", color = "grey") +
show_observations(cp_rf, variables = "age", color = "black") +
show_rugs(cp_rf, variables = "age", color = "red")