plotD3 {ingredients} | R Documentation |
Plots Ceteris Paribus Profiles in D3 with r2d3 Package.
Description
Function plotD3.ceteris_paribus_explainer
plots Individual Variable Profiles for selected observations.
It uses output from ceteris_paribus
function.
Various parameters help to decide what should be plotted, profiles, aggregated profiles, points or rugs.
Find more details in Ceteris Paribus Chapter.
Usage
plotD3(x, ...)
## S3 method for class 'ceteris_paribus_explainer'
plotD3(
x,
...,
size = 2,
alpha = 1,
color = "#46bac2",
variable_type = "numerical",
facet_ncol = 2,
scale_plot = FALSE,
variables = NULL,
chart_title = "Ceteris Paribus Profiles",
label_margin = 60,
show_observations = TRUE,
show_rugs = TRUE
)
Arguments
x |
a ceteris paribus explainer produced with function |
... |
other explainers that shall be plotted together |
size |
a numeric. Set width of lines |
alpha |
a numeric between |
color |
a character. Set line color |
variable_type |
a character. If "numerical" then only numerical variables will be plotted. If "categorical" then only categorical variables will be plotted. |
facet_ncol |
number of columns for the |
scale_plot |
a logical. If |
variables |
if not |
chart_title |
a character. Set custom title |
label_margin |
a numeric. Set width of label margins in |
show_observations |
a logical. Adds observations layer to a plot. By default it's |
show_rugs |
a logical. Adds rugs layer to a plot. By default it's |
Value
a r2d3
object.
References
Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/
Examples
library("DALEX")
library("ingredients")
library("ranger")
model_titanic_rf <- ranger(survived ~., data = titanic_imputed, probability = TRUE)
explain_titanic_rf <- explain(model_titanic_rf,
data = titanic_imputed[,-8],
y = titanic_imputed[,8],
label = "ranger forest",
verbose = FALSE)
selected_passangers <- select_sample(titanic_imputed, n = 10)
cp_rf <- ceteris_paribus(explain_titanic_rf, selected_passangers)
plotD3(cp_rf, variables = c("age","parch","fare","sibsp"),
facet_ncol = 2, scale_plot = TRUE)
selected_passanger <- select_sample(titanic_imputed, n = 1)
cp_rf <- ceteris_paribus(explain_titanic_rf, selected_passanger)
plotD3(cp_rf, variables = c("class", "embarked", "gender", "sibsp"),
facet_ncol = 2, variable_type = "categorical", label_margin = 100, scale_plot = TRUE)