plot.ceteris_paribus_2d_explainer {ingredients} | R Documentation |
Plot Ceteris Paribus 2D Explanations
Description
This function plots What-If Plots for a single prediction / observation.
Usage
## S3 method for class 'ceteris_paribus_2d_explainer'
plot(
x,
...,
facet_ncol = NULL,
add_raster = TRUE,
add_contour = TRUE,
bins = 3,
add_observation = TRUE,
pch = "+",
size = 6
)
Arguments
x |
a ceteris paribus explainer produced with the |
... |
currently will be ignored |
facet_ncol |
number of columns for the |
add_raster |
if |
add_contour |
if |
bins |
number of contours to be added |
add_observation |
if |
pch |
character, symbol used to plot observations |
size |
numeric, size of individual datapoints |
Value
a ggplot2
object
References
Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/
Examples
library("DALEX")
library("ingredients")
library("ranger")
apartments_rf_model <- ranger(m2.price ~., data = apartments)
explainer_rf <- explain(apartments_rf_model,
data = apartments_test[,-1],
y = apartments_test[,1],
verbose = FALSE)
new_apartment <- apartments_test[1,]
new_apartment
wi_rf_2d <- ceteris_paribus_2d(explainer_rf, observation = new_apartment)
head(wi_rf_2d)
plot(wi_rf_2d)
plot(wi_rf_2d, add_contour = FALSE)
plot(wi_rf_2d, add_observation = FALSE)
plot(wi_rf_2d, add_raster = FALSE)
# HR data
model <- ranger(status ~ gender + age + hours + evaluation + salary, data = HR,
probability = TRUE)
pred1 <- function(m, x) predict(m, x)$predictions[,1]
explainer_rf_fired <- explain(model,
data = HR[,1:5],
y = as.numeric(HR$status == "fired"),
predict_function = pred1,
label = "fired")
new_emp <- HR[1,]
new_emp
wi_rf_2d <- ceteris_paribus_2d(explainer_rf_fired, observation = new_emp)
head(wi_rf_2d)
plot(wi_rf_2d)
[Package ingredients version 2.3.0 Index]