parinfluence {influence.SEM} | R Documentation |
Case influence on model parameters.
Description
Computes direction of change in parameter estimates with
\Delta \hat{\theta}_{ji}=\frac{\hat{\theta}_j-\hat{\theta}_{j(i)}}{[VAR(\hat{\theta}_{j(i)})]^{1/2}}
where \hat{\theta}_j
and \hat{\theta}_{j(i)}
are the parameter estimates obtained from original and deleted i
samples.
Usage
parinfluence(parm, model, data, cook = FALSE, ...)
Arguments
parm |
Single parameter or vector of parameters. |
model |
A description of the user-specified model using the lavaan model syntax. See |
data |
A data frame containing the observed variables used in the model. If any variables are declared as ordered factors, this function will treat them as ordinal variables. |
cook |
Logical, if |
... |
Additional parameters for |
Value
Returns a list:
gCD |
Generalized Cook's Distance, if |
Dparm |
Direction of change in parameter estimates. |
Note
If for observation i
model does not converge or yelds a solution with negative estimated variances or NA parameter values, the associated values of \Delta \hat{\theta}_{ji}
are set to NA
.
Author(s)
Massimiliano Pastore
References
Pek, J., MacCallum, R.C. (2011). Sensitivity Analysis in Structural Equation Models: Cases and Their Influence. Multivariate Behavioral Research, 46, 202-228.
Examples
## not run: this example take several minutes
data("PDII")
model <- "
F1 =~ y1+y2+y3+y4
"
# fit0 <- sem(model, data=PDII)
# PAR <- c("F1=~y2","F1=~y3","F1=~y4")
# LY <- parinfluence(PAR,model,PDII)
# str(LY)
# explore.influence(LY$Dparm[,1])
## not run: this example take several minutes
## an example in which the deletion of a case yelds a solution
## with negative estimated variances
model <- "
F1 =~ x1+x2+x3
F2 =~ y1+y2+y3+y4
F3 =~ y5+y6+y7+y8
"
# fit0 <- sem(model, data=PDII)
# PAR <- c("F2=~y2","F2=~y3","F2=~y4")
# LY <- parinfluence(PAR,model,PDII)
## not run: this example take several minutes
## dealing with ordinal data
data(Q)
model <- "
F1 =~ it1+it2+it3+it4+it5+it6+it7+it8+it9+it10
"
# fit0 <- sem(model, data=Q, ordered=colnames(Q))
# LY <- parinfluence("F1=~it4",model,Q,ordered=colnames(Q))
# explore.influence(LY$Dparm[,1])