Deltachi {influence.SEM} | R Documentation |
Chi-square difference.
Description
Quantifies case influence on overall model fit by change in the test statistic
\Delta_{\chi^2_i}=\chi^2-\chi^2_{(i)}
where \chi^2
and \chi^2_{(i)}
are the test statistics obtained from original and deleted i
samples.
Usage
Deltachi(model, data, ..., scaled = FALSE)
Arguments
model |
A description of the user-specified model using the lavaan model syntax. See |
data |
A data frame containing the observed variables used in the model. If any variables are declared as ordered factors, this function will treat them as ordinal variables. |
... |
Additional parameters for |
scaled |
Logical, if |
Value
Returns a vector of \Delta_{\chi^2_i}
.
Note
If for observation i
model does not converge or yelds a solution with negative estimated variances, the associated value of \Delta_{\chi^2_i}
is set to NA
.
This function is a particular case of fitinfluence
, see example below.
Author(s)
Massimiliano Pastore
References
Pek, J., MacCallum, R.C. (2011). Sensitivity Analysis in Structural Equation Models: Cases and Their Influence. Multivariate Behavioral Research, 46, 202-228.
Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48, 1-36.
Rosseel, Y. (2022). The lavaan
tutorial. URL: https://lavaan.ugent.be/tutorial/.
Examples
## not run: this example take several minutes
data("PDII")
model <- "
F1 =~ y1+y2+y3+y4
"
# fit0 <- sem(model, data=PDII)
# Dchi <- Deltachi(model,data=PDII)
# plot(Dchi,pch=19,xlab="observations",ylab="Delta chisquare")
## not run: this example take several minutes
## an example in which the deletion of a case yelds a solution
## with negative estimated variances
model <- "
F1 =~ x1+x2+x3
F2 =~ y1+y2+y3+y4
F3 =~ y5+y6+y7+y8
"
# fit0 <- sem(model, data=PDII)
# Dchi <- Deltachi(model,data=PDII)
# plot(Dchi,pch=19,xlab="observations",ylab="Delta chisquare",main="Deltachi function")
## the case that produces negative estimated variances
# sem(model,data=PDII[-which(is.na(Dchi)),])
## same results
# Dchi <- fitinfluence("chisq",model,data=PDII)$Dind$chisq
# plot(Dchi,pch=19,xlab="observations",ylab="Delta chisquare",main="fitinfluence function")