dfbetas.estex {influence.ME} | R Documentation |
Compute the DFBETAS measure of influential data
Description
DFBETAS (standardized difference of the beta) is a measure that standardizes the absolute difference in parameter estimates between a (mixed effects) regression model based on a full set of data, and a model from which a (potentially influential) subset of data is removed. A value for DFBETAS is calculated for each parameter in the model separately. This function computes the DFBETAS based on the information returned by the influence() function.
Usage
## S3 method for class 'estex'
dfbetas(model, parameters = 0, sort=FALSE, to.sort=NA, abs=FALSE, ...)
Arguments
model |
An object as returned by the influence() function, containing the altered estimates of a mixed effects regression model |
parameters |
Used to define a selection of parameters. If parameters=0 (default), DFBETAS is calculated for all parameters in the model |
sort |
If |
to.sort |
Specify on which variable the DFBETAS must be sorted. If only one variable present (either in the model, or due to the selection specified in |
abs |
If |
... |
Currently not used |
Value
A matrix is returned, containing DFBETAS-values for each (selected) fixed parameter of the model, and separately for each evaluated set of influential data.
Author(s)
Rense Nieuwenhuis, Ben Pelzer, Manfred te Grotenhuis
References
Nieuwenhuis, R., Te Grotenhuis, M., & Pelzer, B. (2012). Influence.ME: tools for detecting influential data in mixed effects models. R Journal, 4(2), 38???47.
Belsley, D.A., Kuh, E. & Welsch, R.E. (1980). Regression Diagnostics. Identifying Influential Data and Source of Collinearity. Wiley.
Snijders, T.A. & Bosker, R.J. (1999). Multilevel Analysis, an introduction to basic and advanced multilevel modeling. Sage.
Van der Meer, T., Te Grotenhuis, M., & Pelzer, B. (2010). Influential Cases in Multilevel Modeling: A Methodological Comment. American Sociological Review, 75(1), 173-178.
See Also
influence.mer
, cooks.distance.estex
Examples
## Not run:
data(school23)
model <- lmer(math ~ structure + SES + (1 | school.ID), data=school23)
alt.est <- influence(model, group="school.ID")
dfbetas(alt.est)
## End(Not run)