muSigma {indirect} | R Documentation |
Function to estimate mean and covariance for unknown parameters
\beta
.
Description
Function to estimate mean and covariance for unknown parameters
\beta
.
Usage
muSigma(Z, X = NULL, fit.method = "KL", wls.method = "default")
Arguments
Z |
list of design points and link function that is an output of
function |
X |
model matrix for model formula and design points. The covariates
must correspond to the description of design points in |
fit.method |
character, |
wls.method |
character giving the numerical solution method: |
Value
list of mu
, numeric vector of location parameters for the
normal prior; Sigma
, the covariance matrix; and log.like
, a
scalar
Examples
X <- matrix(c(1, 1, 0, 1), nrow = 2) # design
Z <- designLink(design = X)
Z <- elicitPt(Z, design.pt = 1,
lower.CI.bound = -1,
median = 0,
upper.CI.bound = 1,
comment = "The first completed elicitation scenario.")
Z <- elicitPt(Z, design.pt = 2,
lower.CI.bound = -2,
median = 1,
upper.CI.bound = 2,
comment = "The second completed elicitation scenario.")
prior <- muSigma(Z, X, fit.method = "KL")
prior$mu
prior$Sigma