multinomial_em {imputeMulti} | R Documentation |
EM algorithm for multinomial data
Description
Implement the EM algorithm for multivariate multinomial data given
observed counts of complete and missing data (Y_obs
and Y_mis
). Allows for
specification of a Dirichlet conjugate prior.
Usage
multinomial_em(
x_y,
z_Os_y,
enum_comp,
n_obs,
conj_prior = c("none", "data.dep", "flat.prior", "non.informative"),
alpha = NULL,
tol = 5e-07,
max_iter = 10000,
verbose = FALSE
)
Arguments
x_y |
A |
z_Os_y |
A |
enum_comp |
A |
n_obs |
An integer specifying the number of observations in the original data. |
conj_prior |
A string specifying the conjugate prior. One of
|
alpha |
The vector of counts |
tol |
A scalar specifying the convergence criteria. Defaults to |
max_iter |
An integer specifying the maximum number of allowable iterations. Defaults
to |
verbose |
Logical. If |
Value
An object of class mod_imputeMulti-class
.
See Also
multinomial_data_aug
, multinomial_impute
Examples
## Not run:
data(tract2221)
x_y <- multinomial_stats(tract2221[,1:4], output= "x_y")
z_Os_y <- multinomial_stats(tract2221[,1:4], output= "z_Os_y")
x_possible <- multinomial_stats(tract2221[,1:4], output= "possible.obs")
imputeEM_mle <- multinomial_em(x_y, z_Os_y, x_possible, n_obs= nrow(tract2221),
conj_prior= "none", verbose= TRUE)
## End(Not run)