| multinomial_em {imputeMulti} | R Documentation | 
EM algorithm for multinomial data
Description
Implement the EM algorithm for multivariate multinomial data given
observed counts of complete and missing data (Y_obs and Y_mis). Allows for 
specification of a Dirichlet conjugate prior.
Usage
multinomial_em(
  x_y,
  z_Os_y,
  enum_comp,
  n_obs,
  conj_prior = c("none", "data.dep", "flat.prior", "non.informative"),
  alpha = NULL,
  tol = 5e-07,
  max_iter = 10000,
  verbose = FALSE
)
Arguments
| x_y | A  | 
| z_Os_y | A  | 
| enum_comp | A  | 
| n_obs | An integer specifying the number of observations in the original data. | 
| conj_prior | A string specifying the conjugate prior. One of
 | 
| alpha | The vector of counts  | 
| tol | A scalar specifying the convergence criteria. Defaults to  | 
| max_iter | An integer specifying the maximum number of allowable iterations. Defaults
to  | 
| verbose | Logical. If  | 
Value
An object of class mod_imputeMulti-class.
See Also
multinomial_data_aug, multinomial_impute
Examples
## Not run: 
 data(tract2221)
 x_y <- multinomial_stats(tract2221[,1:4], output= "x_y")
 z_Os_y <- multinomial_stats(tract2221[,1:4], output= "z_Os_y")
 x_possible <- multinomial_stats(tract2221[,1:4], output= "possible.obs")
 imputeEM_mle <- multinomial_em(x_y, z_Os_y, x_possible, n_obs= nrow(tract2221),
                     conj_prior= "none", verbose= TRUE)
## End(Not run)