multi_dsciat {implicitMeasures} | R Documentation |
Plot SC-IATs scores
Description
Plot the scores from two different SC-IATs.
Usage
multi_dsciat(
sciat1,
sciat2,
graph = c("density", "violin", "point"),
x_values = TRUE,
gcolors = c("dark", "greens", "blues", "pinks"),
label_sc1 = "SC-IAT1",
label_sc2 = "SC-IAT2",
label_y = "SC-IAT scores",
dens_mean = TRUE
)
Arguments
sciat1 |
Dataframe with class |
sciat2 |
Dataframe with class |
graph |
String. Type of graph to display. Default is |
x_values |
Logical. Shows the values for x-axis (default = |
gcolors |
String. Colors palette for plotting the results. Default is |
label_sc1 |
String. Label to display in the graph for the first SC-IAT.
Default is |
label_sc2 |
String. Label to display in the graph for the first SC-IAT.
Default is |
label_y |
String. Label to plot on the y-axis. |
dens_mean |
Logical. Whether to include the mean in the density plot. Default is TRUE. |
Value
A ggplot object
Examples
# calculate D for the SCIAT
data("raw_data") # load data
sciat_data <- clean_sciat(raw_data, sbj_id = "Participant",
block_id = "blockcode",
latency_id = "latency",
accuracy_id = "correct",
block_sciat_1 = c("test.sc_dark.Darkbad",
"test.sc_dark.Darkgood"),
block_sciat_2 = c("test.sc_milk.Milkbad",
"test.sc_milk.Milkgood"),
trial_id = "trialcode",
trial_eliminate = c("reminder",
"reminder1"))
sciat1 <- sciat_data[[1]] # compute D for the first SC-IAT
d_sciat1 <- compute_sciat(sciat1,
mappingA = "test.sc_dark.Darkbad",
mappingB = "test.sc_dark.Darkgood",
non_response = "alert") # dataframe with the first D
# SC-IAT
sciat2 <- sciat_data[[2]] # Compute D for the second SC-IAT
d_sciat2 <- compute_sciat(sciat2,
mappingA = "test.sc_milk.Milkbad",
mappingB = "test.sc_milk.Milkgood",
non_response = "alert") # dataframe with the first
# D SC-IAT
multi_dsciat(d_sciat1, d_sciat2) # plot the D of two SC-IATs with default
# settings
[Package implicitMeasures version 0.2.1 Index]