descript_d {implicitMeasures} | R Documentation |
Descriptive table of either the IAT D-score or the SC-IAT Ds
Description
Descriptive statistics for the IAT D-score or the SC-IAT D.
Usage
descript_d(data, latex = FALSE)
Arguments
data |
Dataframe with either class |
latex |
Logical. If |
Value
Dataframe, containing the mean, s.d., minimum and maximum of the IAT
(D-score
, D-practice
, and D-test
) or the SC-IAT
(D-Sciat
, RT.MappingA
, RT.MappingB
).
Examples
# compute D-score 2 for the IAT data ###
data("raw_data") # import data
iat_cleandata <- clean_iat(raw_data, sbj_id = "Participant",
block_id = "blockcode",
mapA_practice = "practice.iat.Milkbad",
mapA_test = "test.iat.Milkbad",
mapB_practice = "practice.iat.Milkgood",
mapB_test = "test.iat.Milkgood",
latency_id = "latency",
accuracy_id = "correct",
trial_id = "trialcode",
trial_eliminate = c("reminder", "reminder1"),
demo_id = "blockcode",
trial_demo = "demo")
iat_data <- iat_cleandata[[1]]
# calculate D-score
iat_dscore <- compute_iat(iat_data,
Dscore = "d2")
descript_d(iat_dscore) # descriptive statistics for the IAT
# calculate D for the SCIAT
data("raw_data") # load data
sciat_data <- clean_sciat(raw_data, sbj_id = "Participant",
block_id = "blockcode",
latency_id = "latency",
accuracy_id = "correct",
block_sciat_1 = c("test.sc_dark.Darkbad",
"test.sc_dark.Darkgood"),
block_sciat_2 = c("test.sc_milk.Milkbad",
"test.sc_milk.Milkgood"),
trial_id = "trialcode",
trial_eliminate = c("reminder",
"reminder1"))
sciat1 <- sciat_data[[1]] # compute D for the first SC-IAT
d_sciat1 <- compute_sciat(sciat1,
mappingA = "test.sc_dark.Darkbad",
mappingB = "test.sc_dark.Darkgood",
non_response = "alert")
descript_d(d_sciat1,
latex = TRUE) # descriptive statistics for the SC-IAT in latex
# format
[Package implicitMeasures version 0.2.1 Index]