entropy {immunarch} | R Documentation |
Information measures
Description
Compute information-based estimates and distances.
Usage
entropy(.data, .base = 2, .norm = FALSE, .do.norm = NA, .laplace = 1e-12)
kl_div(.alpha, .beta, .base = 2, .do.norm = NA, .laplace = 1e-12)
js_div(.alpha, .beta, .base = 2, .do.norm = NA, .laplace = 1e-12, .norm.entropy = FALSE)
cross_entropy(.alpha, .beta, .base = 2, .do.norm = NA,
.laplace = 1e-12, .norm.entropy = FALSE)
Arguments
.data |
Numeric vector. Any distribution. |
.base |
Numeric. A base of logarithm. |
.norm |
Logical. If TRUE then normalises the entropy by the maximal value of the entropy. |
.do.norm |
If TRUE then normalises the input distributions to make them sum up to 1. |
.laplace |
Numeric. A value for the laplace correction. |
.alpha |
Numeric vector. A distribution of some random value. |
.beta |
Numeric vector. A distribution of some random value. |
.norm.entropy |
Logical. If TRUE then normalises the resulting value by the average entropy of input distributions. |
Value
A numeric value.
Examples
P <- abs(rnorm(10))
Q <- abs(rnorm(10))
entropy(P)
kl_div(P, Q)
js_div(P, Q)
cross_entropy(P, Q)
[Package immunarch version 0.9.1 Index]