impute_data {imanr} | R Documentation |
Impute the data implementing random forest for native corn data.
Description
Impute and prepare a dataframe to apply the find_racialcomplex()
function,
in case the dataframe has missing values. The imputation is done with random
forests. The database must have the same variables as those in bdMaiz.rds
in this same package.
Usage
impute_data(data, useParallel = FALSE)
Arguments
data |
An incomplete dataset that contains qualitative and quantitative characteristics of a corn or series of corns. The selected characteristics are related to colors, some measurements, and the locations in which the corn was grown. A template for what has to be filled will be included on the GitHub page of the project. |
useParallel |
Logical. Perform the analysis in parallel? Defaults to FALSE. |
Value
impute_data()
returns an imputed dataset that can be used with
find_racialcomplex()
.
Author(s)
Rafael Nieves-Alvarez (nievesalvarez1618@gmail.com), Arturo Sanchez-Porras, Aline Romero-Natale, Otilio Arturo Acevedo-Sandoval
References
Báez Vergara, K. J. Estimación de datos faltantes a través de redes neuronales, una comparación con métodos simples y múltiples (Doctoral dissertation, Universidad Santo Tomás).
See Also
[find_racialcomplex()]
Examples
set.seed(42)
df <- data24[17,]
df
df_imp <- impute_data(df, useParallel = FALSE)
df_imp