image_wordsegmentation {image.textlinedetector} | R Documentation |
Find Words by Connected Components Labelling
Description
Filter the image using the gaussian kernel and extract components which are connected which are to be considered as words.
Usage
image_wordsegmentation(x, kernelSize = 11L, sigma = 11L, theta = 7L)
Arguments
x |
an object of class opencv-image containing black/white binary data (type CV_8U1) |
kernelSize |
size of the kernel |
sigma |
sigma of the kernel |
theta |
theta of the kernel |
Value
a list with elements
n: the number of lines found
overview: an opencv-image of the detected areas
words: a list of opencv-image's, one for each word area
Examples
library(opencv)
library(magick)
library(image.textlinedetector)
path <- system.file(package = "image.textlinedetector", "extdata", "example.png")
img <- image_read(path)
img <- image_resize(img, "x1000")
areas <- image_textlines_flor(img, light = TRUE, type = "sauvola")
areas$overview
areas$textlines[[6]]
textwords <- image_wordsegmentation(areas$textlines[[6]])
textwords$n
textwords$overview
textwords$words[[2]]
textwords$words[[3]]
[Package image.textlinedetector version 0.2.3 Index]