sample_last_cit {igraph} | R Documentation |
Random citation graphs
Description
sample_last_cit()
creates a graph, where vertices age, and
gain new connections based on how long ago their last citation
happened.
Usage
sample_last_cit(
n,
edges = 1,
agebins = n/7100,
pref = (1:(agebins + 1))^-3,
directed = TRUE
)
last_cit(...)
sample_cit_types(
n,
edges = 1,
types = rep(0, n),
pref = rep(1, length(types)),
directed = TRUE,
attr = TRUE
)
cit_types(...)
sample_cit_cit_types(
n,
edges = 1,
types = rep(0, n),
pref = matrix(1, nrow = length(types), ncol = length(types)),
directed = TRUE,
attr = TRUE
)
cit_cit_types(...)
Arguments
n |
Number of vertices. |
edges |
Number of edges per step. |
agebins |
Number of aging bins. |
pref |
Vector ( |
directed |
Logical scalar, whether to generate directed networks. |
... |
Passed to the actual constructor. |
types |
Vector of length ‘ |
attr |
Logical scalar, whether to add the vertex types to the generated
graph as a vertex attribute called ‘ |
Details
sample_cit_cit_types()
is a stochastic block model where the
graph is growing.
sample_cit_types()
is similarly a growing stochastic block model,
but the probability of an edge depends on the (potentially) cited
vertex only.
Value
A new graph.
Author(s)
Gabor Csardi csardi.gabor@gmail.com
See Also
Random graph models (games)
erdos.renyi.game()
,
sample_()
,
sample_bipartite()
,
sample_correlated_gnp()
,
sample_correlated_gnp_pair()
,
sample_degseq()
,
sample_dot_product()
,
sample_fitness()
,
sample_fitness_pl()
,
sample_forestfire()
,
sample_gnm()
,
sample_gnp()
,
sample_grg()
,
sample_growing()
,
sample_hierarchical_sbm()
,
sample_islands()
,
sample_k_regular()
,
sample_pa()
,
sample_pa_age()
,
sample_pref()
,
sample_sbm()
,
sample_smallworld()
,
sample_traits_callaway()
,
sample_tree()