| sample_hierarchical_sbm {igraph} | R Documentation |
Sample the hierarchical stochastic block model
Description
Sampling from a hierarchical stochastic block model of networks.
Usage
sample_hierarchical_sbm(n, m, rho, C, p)
hierarchical_sbm(...)
Arguments
n |
Integer scalar, the number of vertices. |
m |
Integer scalar, the number of vertices per block. |
rho |
Numeric vector, the fraction of vertices per cluster, within a
block. Must sum up to 1, and |
C |
A square, symmetric numeric matrix, the Bernoulli rates for the
clusters within a block. Its size must mach the size of the |
p |
Numeric scalar, the Bernoulli rate of connections between vertices in different blocks. |
... |
Passed to |
Details
The function generates a random graph according to the hierarchical stochastic block model.
Value
An igraph graph.
Author(s)
Gabor Csardi csardi.gabor@gmail.com
See Also
Random graph models (games)
erdos.renyi.game(),
sample_(),
sample_bipartite(),
sample_correlated_gnp(),
sample_correlated_gnp_pair(),
sample_degseq(),
sample_dot_product(),
sample_fitness(),
sample_fitness_pl(),
sample_forestfire(),
sample_gnm(),
sample_gnp(),
sample_grg(),
sample_growing(),
sample_islands(),
sample_k_regular(),
sample_last_cit(),
sample_pa(),
sample_pa_age(),
sample_pref(),
sample_sbm(),
sample_smallworld(),
sample_traits_callaway(),
sample_tree()
Examples
## Ten blocks with three clusters each
C <- matrix(c(
1, 3 / 4, 0,
3 / 4, 0, 3 / 4,
0, 3 / 4, 3 / 4
), nrow = 3)
g <- sample_hierarchical_sbm(100, 10, rho = c(3, 3, 4) / 10, C = C, p = 1 / 20)
g
if (require(Matrix)) {
image(g[])
}