| connect {igraph} | R Documentation |
Neighborhood of graph vertices
Description
These functions find the vertices not farther than a given limit from
another fixed vertex, these are called the neighborhood of the vertex.
Note that ego() and neighborhood(),
ego_size() and neighborhood_size(),
make_ego_graph() and make_neighborhood()_graph(),
are synonyms (aliases).
Usage
connect(graph, order, mode = c("all", "out", "in", "total"))
ego_size(
graph,
order = 1,
nodes = V(graph),
mode = c("all", "out", "in"),
mindist = 0
)
neighborhood_size(
graph,
order = 1,
nodes = V(graph),
mode = c("all", "out", "in"),
mindist = 0
)
ego(
graph,
order = 1,
nodes = V(graph),
mode = c("all", "out", "in"),
mindist = 0
)
neighborhood(
graph,
order = 1,
nodes = V(graph),
mode = c("all", "out", "in"),
mindist = 0
)
make_ego_graph(
graph,
order = 1,
nodes = V(graph),
mode = c("all", "out", "in"),
mindist = 0
)
make_neighborhood_graph(
graph,
order = 1,
nodes = V(graph),
mode = c("all", "out", "in"),
mindist = 0
)
Arguments
graph |
The input graph. |
order |
Integer giving the order of the neighborhood. |
mode |
Character constant, it specifies how to use the direction of
the edges if a directed graph is analyzed. For ‘out’ only the
outgoing edges are followed, so all vertices reachable from the source
vertex in at most |
nodes |
The vertices for which the calculation is performed. |
mindist |
The minimum distance to include the vertex in the result. |
Details
The neighborhood of a given order r of a vertex v includes all
vertices which are closer to v than the order. I.e. order 0 is always
v itself, order 1 is v plus its immediate neighbors, order 2
is order 1 plus the immediate neighbors of the vertices in order 1, etc.
ego_size()/neighborhood_size() (synonyms) returns the size of the neighborhoods of the given order,
for each given vertex.
ego()/neighborhood() (synonyms) returns the vertices belonging to the neighborhoods of the given
order, for each given vertex.
make_ego_graph()/make_neighborhood()_graph() (synonyms) is creates (sub)graphs from all neighborhoods of
the given vertices with the given order parameter. This function preserves
the vertex, edge and graph attributes.
connect() creates a new graph by connecting each vertex to
all other vertices in its neighborhood.
Value
ego_size()/neighborhood_size()returns with an integer vector.ego()/neighborhood()(synonyms) returns A list ofigraph.vsor a list of numeric vectors depending on the value ofigraph_opt("return.vs.es"), see details for performance characteristics.make_ego_graph()/make_neighborhood_graph()returns with a list of graphs.connect()returns with a new graph object.
Author(s)
Gabor Csardi csardi.gabor@gmail.com, the first version was done by Vincent Matossian
See Also
Other functions for manipulating graph structure:
+.igraph(),
add_edges(),
add_vertices(),
complementer(),
compose(),
contract(),
delete_edges(),
delete_vertices(),
difference(),
difference.igraph(),
disjoint_union(),
edge(),
igraph-minus,
intersection(),
intersection.igraph(),
path(),
permute(),
rep.igraph(),
reverse_edges(),
simplify(),
union(),
union.igraph(),
vertex()
Other structural.properties:
bfs(),
component_distribution(),
constraint(),
coreness(),
degree(),
dfs(),
distance_table(),
edge_density(),
feedback_arc_set(),
girth(),
is_acyclic(),
is_dag(),
is_matching(),
k_shortest_paths(),
knn(),
reciprocity(),
subcomponent(),
subgraph(),
topo_sort(),
transitivity(),
unfold_tree(),
which_multiple(),
which_mutual()
Examples
g <- make_ring(10)
ego_size(g, order = 0, 1:3)
ego_size(g, order = 1, 1:3)
ego_size(g, order = 2, 1:3)
# neighborhood_size() is an alias of ego_size()
neighborhood_size(g, order = 0, 1:3)
neighborhood_size(g, order = 1, 1:3)
neighborhood_size(g, order = 2, 1:3)
ego(g, order = 0, 1:3)
ego(g, order = 1, 1:3)
ego(g, order = 2, 1:3)
# neighborhood() is an alias of ego()
neighborhood(g, order = 0, 1:3)
neighborhood(g, order = 1, 1:3)
neighborhood(g, order = 2, 1:3)
# attributes are preserved
V(g)$name <- c("a", "b", "c", "d", "e", "f", "g", "h", "i", "j")
make_ego_graph(g, order = 2, 1:3)
# make_neighborhood_graph() is an alias of make_ego_graph()
make_neighborhood_graph(g, order = 2, 1:3)
# connecting to the neighborhood
g <- make_ring(10)
g <- connect(g, 2)