| cluster_fast_greedy {igraph} | R Documentation | 
Community structure via greedy optimization of modularity
Description
This function tries to find dense subgraph, also called communities in graphs via directly optimizing a modularity score.
Usage
cluster_fast_greedy(
  graph,
  merges = TRUE,
  modularity = TRUE,
  membership = TRUE,
  weights = NULL
)
Arguments
| graph | The input graph | 
| merges | Logical scalar, whether to return the merge matrix. | 
| modularity | Logical scalar, whether to return a vector containing the modularity after each merge. | 
| membership | Logical scalar, whether to calculate the membership vector corresponding to the maximum modularity score, considering all possible community structures along the merges. | 
| weights | The weights of the edges. It must be a positive numeric vector,
 | 
Details
This function implements the fast greedy modularity optimization algorithm for finding community structure, see A Clauset, MEJ Newman, C Moore: Finding community structure in very large networks, http://www.arxiv.org/abs/cond-mat/0408187 for the details.
Value
cluster_fast_greedy() returns a communities()
object, please see the communities() manual page for details.
Author(s)
Tamas Nepusz ntamas@gmail.com and Gabor Csardi csardi.gabor@gmail.com for the R interface.
References
A Clauset, MEJ Newman, C Moore: Finding community structure in very large networks, http://www.arxiv.org/abs/cond-mat/0408187
See Also
communities() for extracting the results.
See also cluster_walktrap(),
cluster_spinglass(),
cluster_leading_eigen() and
cluster_edge_betweenness(), cluster_louvain()
cluster_leiden() for other methods.
Community detection
as_membership(),
cluster_edge_betweenness(),
cluster_fluid_communities(),
cluster_infomap(),
cluster_label_prop(),
cluster_leading_eigen(),
cluster_leiden(),
cluster_louvain(),
cluster_optimal(),
cluster_spinglass(),
cluster_walktrap(),
compare(),
groups(),
make_clusters(),
membership(),
modularity.igraph(),
plot_dendrogram(),
split_join_distance(),
voronoi_cells()
Examples
g <- make_full_graph(5) %du% make_full_graph(5) %du% make_full_graph(5)
g <- add_edges(g, c(1, 6, 1, 11, 6, 11))
fc <- cluster_fast_greedy(g)
membership(fc)
sizes(fc)