igc {iglu} | R Documentation |
Calculate Index of Glycemic Control
Description
The function igc produces IGC values in a tibble object.
Usage
igc(data, LLTR = 80, ULTR = 140, a = 1.1, b = 2, c = 30, d = 30)
Arguments
data |
DataFrame object with column names "id", "time", and "gl", or numeric vector of glucose values. |
LLTR |
Lower Limit of Target Range, default value is 80 mg/dL. |
ULTR |
Upper Limit of Target Range, default value is 140 mg/dL. |
a |
Exponent, generally in the range from 1.0 to 2.0, default value is 1.1. |
b |
Exponent, generally in the range from 1.0 to 2.0, default value is 2. |
c |
Scaling factor, to display Hyperglycemia Index, Hypoglycemia Index, and IGC on approximately the same numerical range as measurements of HBGI, LBGI and GRADE, default value is 30. |
d |
Scaling factor,to display Hyperglycemia Index, Hypoglycemia Index, and IGC on approximately the same numerical range as measurements of HBGI, LBGI and GRADE, default value is 30. |
Details
A tibble object with 1 row for each subject, a column for subject id and a column for the IGC values is returned.
IGC is calculated by taking the sum of the Hyperglycemia
Index and the Hypoglycemia index. See hypo_index
and
hyper_index
.
Value
A tibble object with two columns: subject id and corresponding IGC value.
References
Rodbard (2009) Interpretation of continuous glucose monitoring data: glycemic variability and quality of glycemic control, Diabetes Technology and Therapeutics 11 .55-67, doi:10.1089/dia.2008.0132.
Examples
data(example_data_1_subject)
igc(example_data_1_subject)
igc(example_data_1_subject, ULTR = 160)
data(example_data_5_subject)
igc(example_data_5_subject)
igc(example_data_5_subject, LLTR = 75, ULTR = 150)