hyper_index {iglu} | R Documentation |
Calculate Hyperglycemia Index
Description
The function hyper_index produces Hyperglycemia Index values in a tibble object.
Usage
hyper_index(data, ULTR = 140, a = 1.1, c = 30)
Arguments
data |
DataFrame object with column names "id", "time", and "gl", or numeric vector of glucose values. |
ULTR |
Upper Limit of Target Range, default value is 140 mg/dL. |
a |
Exponent, generally in the range from 1.0 to 2.0, default value is 1.1. |
c |
Scaling factor, to display Hyperglycemia Index, Hypoglycemia Index, and IGC on approximately the same numerical range as measurements of HBGI, LBGI and GRADE, default value is 30. |
Details
A tibble object with 1 row for each subject, a column for subject id and a column for the Hyperglycemia Index values is returned. NA glucose values are omitted from the calculation of the Hyperglycemia Index values.
Hyperglycemia Index is calculated by n/c * \sum [(hyperBG_j-ULTR) ^{a}]
Here n is the total number of Glucose measurements (excluding NA values), hyperBG_j
is the jth Glucose measurement above the ULTR cutoff, a is an exponent, and c is a scaling factor.
Value
If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding Hyperglycemia Index value is returned. If a vector of glucose values is passed, then a tibble object with just the Hyperglycemia Index value is returned. as.numeric() can be wrapped around the latter to output just a numeric value.
References
Rodbard (2009) Interpretation of continuous glucose monitoring data: glycemic variability and quality of glycemic control, Diabetes Technology and Therapeutics 11 .55-67, doi:10.1089/dia.2008.0132.
Examples
data(example_data_1_subject)
hyper_index(example_data_1_subject)
hyper_index(example_data_1_subject, ULTR = 160)
data(example_data_5_subject)
hyper_index(example_data_5_subject)
hyper_index(example_data_5_subject, ULTR = 150)