dr {ie2misc} | R Documentation |
Index of agreement (dr)
Description
This function computes the "index of agreement (dr)".
Usage
dr(predicted, observed, na.rm = FALSE)
Arguments
predicted |
numeric vector that contains the predicted data points (1st parameter) |
observed |
numeric vector that contains the observed data points (2nd parameter) |
na.rm |
logical vector that determines whether the missing values should be removed or not. |
Details
dr is expressed as
d_{r} = 1 - \frac{\sum \limits_{i=1}^n{\left|P_i - O_i\right|}}{c \sum \limits_{i=1}^n{\left|O_i - \bar{O}\right|}}, \: when \: \sum \limits_{i=1}^n{\left|P_i - O_i\right|} \leq c \: \sum \limits_{i=1}^n{\left|O_i - \bar{O}\right|}
d_{r} = \frac{{c \sum \limits_{i=1}^n{\left|O_i - \bar{O}\right|}}}{\sum \limits_{i=1}^n{\left|P_i - O_i\right|}} - 1, \: when \: \sum \limits_{i=1}^n{\left|P_i - O_i\right|} > c \: \sum \limits_{i=1}^n{\left|O_i - \bar{O}\right|}
d_r
the "index of agreement (dr)"
- n
the number of observations
- P
the "model estimates or predictions"
- O
the "pairwise-matched observations that are judged to be reliable"
\bar{O}
the "true" mean of the observations
Note: Both P and O should have the same units.
The "index of agreement (dr)" is fully discussed in the Willmott reference.
Value
"index of agreement (dr)" as a numeric vector. The default choice
is that any NA values will be kept (na.rm = FALSE). This can be
changed by specifying na.rm = TRUE
, such as dr(pre, obs, na.rm = TRUE)
.
References
Cort J. Willmott, Scott M. Robeson, and Kenji Matsuura, "A refined index of model performance", International Journal of Climatology, Volume 32, Issue 13, pages 2088-2094, 15 November 2012, article from ResearchGate: https://www.researchgate.net/publication/235961403_A_refined_index_of_model_performance.
See Also
mape
for mean absolute percent error (MAPE), mae
for
mean-absolute error (MAE), madstat
for mean-absolute deviation (MAD), vnse
for Nash-Sutcliffe model efficiency (NSE), and rmse
for root mean square error (RMSE).
Examples
library("ie2misc")
obs <- 1:10 # observed
pre <- 2:11 # predicted
dr(pre, obs)
library("rando")
set_n(100) # makes the example reproducible
obs1 <- r_norm(.seed = 400) # observed
pre1 <- r_norm(.seed = 500) # predicted
# using the vectors pre1 and obs1
dr(pre1, obs1)
# using a matrix of the numeric vectors pre1 and obs1
mat1 <- matrix(data = c(obs1, pre1), nrow = length(pre1), ncol = 2,
byrow = FALSE, dimnames = list(c(rep("", length(pre1))),
c("Predicted", "Observed")))
dr(mat1[, 2], mat1[, 1])
# mat1[, 1] # observed values from column 1 of mat1
# mat1[, 2] # predicted values from column 2 of mat1
# using a data.frame of the numeric vectors pre1 and obs1
df1 <- data.frame(obs1, pre1)
dr(df1[, 2], df1[, 1])
# df1[, 1] # observed values from column 1 of df1
# df1[, 2] # predicted values from column 2 of df1
library("data.table")
# using a data.table of the numeric vectors pre1 and obs1
df2 <- data.table(obs1, pre1)
dr(df2[, 2, with = FALSE][[1]], df2[, 1, with = FALSE][[1]])
# df2[, 1, with = FALSE][[1]] # observed values from column 1 of df2
# df2[, 2, with = FALSE][[1]] # predicted values from column 2 of df2