A Network Tool to Dissect Spatial Community Ecology


[Up] [Top]

Documentation for package ‘idopNetwork’ version 0.1.2

Help Pages

bifun_clu main function for bifunctional clustering
bifun_clu_convert convert result of bifunctional clustering result
bifun_clu_parallel parallel version for functional clustering
bifun_clu_plot bifunctional clustering plot
biget_par_int acquire initial parameters for functional clustering
bipower_equation_plot plot power equation fitting results for bi-variate model
biqdODE_plot_all plot all decompose plot for two data
biqdODE_plot_base plot single decompose plot for two data
biQ_function Q-function to replace log-likelihood function
darken make color more dark
data_cleaning remove observation with too many 0 values
data_match match power_equation fit result for bi-variate model
fun_clu main function for functional clustering
fun_clu_BIC plot BIC results for functional clustering
fun_clu_convert convert result of functional clustering result
fun_clu_parallel parallel version for functional clustering
fun_clu_plot functional clustering plot
fun_clu_select select result of functional clustering result
get_biSAD1 generate biSAD1 covariance matrix
get_interaction Lasso-based variable selection
get_legendre_matrix generate legendre matrix
get_legendre_par use legendre polynomials to fit a given data
get_mu curve fit with modified logistic function
get_mu2 generate mean vectors with ck and stress condition
get_par_int acquire initial parameters for functional clustering
get_SAD1_covmatrix generate standard SAD1 covariance matrix
gut_microbe gut microbe OTU data (species level)
legendre_fit generate curve based on legendre polynomials
logsumexp calculate log-sum-exp values
mustard_microbe mustard microbe OTU data
network_conversion convert ODE results(ODE_solving2) to basic network plot table
network_maxeffect convert ODE results(ODE_solving2) to basic network plot table
network_plot generate network plot
normalization min-max normalization
power_equation use power equation parameters to generate y values
power_equation_all use power equation to fit observed values
power_equation_base use power equation to fit observed values
power_equation_fit use power equation to fit given dataset
power_equation_plot plot power equation fitting results
qdODEmod quasi-dynamic lotka volterra model
qdODEplot_convert convert qdODE results to plot data
qdODE_all wrapper for qdODE model
qdODE_fit legendre polynomials fit to qdODE model
qdODE_ls least-square fit for qdODE model
qdODE_parallel wrapper for qdODE_all in parallel version
qdODE_plot_all plot all decompose plot
qdODE_plot_base plot single decompose plot
Q_function Q-function to replace log-likelihood function